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INTRODUCTION

We are completing a study to determine the effects of suspension of rats in an

antiorthostatic, hypodynamic, hypokinetic model [1]. This model simulates some aspects of

weightlessness [1]. While not a perfect model, suspension studies can yield useful information

for planning of experiments for studies on astronauts actually undergoing space flight. Stress

factors in suspension can, in part, be controlled for by suspending rats in an orthostatic

position that does not result in effects similar to those of weightlessness [1]. Preliminary

studies we have carried out indicated that antiorthostatic suspension of rats and mice resulted

in a transient inhibition of interferon-alpha/beta production [2,3]. An additional study indicated

that such suspension of mice resulted in decreased resistance to encephalomyocarditis-D

virus, which correlated with the decreased interferon production [4]. The current grant

extended these studies in the following fashion:

1) Effects of suspension on interferon-gamma production,

2) Effects of suspension on interleukin-1 and interleukin-2 production,

3) Effects of suspension on distribution of leukocyte sub-populations,

4) Role of changes in calcium levels in initiating these effects, in an attempt to

determine the nature of the interactions of the immune system with other physiological

systems when suspension and space flight effects are induced.





METHODS, RESULTS AND DISCUSSION

3

The work that has been performed as part of this research grant has involved the study

of ground-based models for the effects of space flight on immune responses. The model for

which most time was spent was the antiorthostatic, hypokinetic, hypodynamic suspension

model for rats. From our results, it appears that suspension is useful for modeling the effects of

space flight on functional immune responses, such as interferon and interleukin production. It

does not appear to be useful for modeling shifts in leukocyte sub-populations. Calcium and

1,25-dihydroxyvitamin D 3 appear to play a pivitol role in regulating shifts in immune responses

due to suspension. The macrophage appears to be an important target cell for the effects of

suspension on immune responses.

Other studies were carried out to determine the role of various immunological

parameters in resistance to infection. Since we have shown that these parameters can be

altered after space flight and in the suspension modeling, it was important to determine the

role of these immune responses in resistance to infection, which could have impact in the

design of future flight and suspension studies to determine if the space-flight-induced

cganges in immune response actually alter resistance to infection. We shoewed that both the

classll histocompatibility antigens and the cytokines, which can be altered by space flight

and/or by suspension, played major roles in resistance to infection with microorganisms.

In addition, we have been carrying out collaborative studies with Drs. Felix Gmunder

and Augusto Cogoli to determine the role of the substratum in regulating the effects of

microgravity on lymphocyte activation. The results of this study indicate that the interaction of

lymphocytes with surfaces plays a central role in regulating lymphocyte activation.

In summary, we have successfully developed models for in vivo effects of space flight

on rat functional immune responses, and an _ model for functional human immune
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responses.

The detailsof this work aredescribedinpapersthat have beenpublishedas a result of

the work performed under this grant. The papers, creditingthe support from this grant, are

appendedto this report. In addition,we expect to publish additional manuscriptsbased on

thiswork in the future. Thesemanuscriptswill be forwardedto you assoon as they are ready.
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Depressed Interferon Gamma Production

and Monocyte HLA-DR Expression

After Severe In"gury
David H. Livingston, MD; Sarah H. Appel; Samuel R. Wellhausen, PhD;

Gerald Sonnenfeld, PhD; Hiram C. Polk, Jr, MD

• Monocyte HLA-DR antigen expression and mitogen-stim-
ulated Interferon gamma production were measured eequen-
tlally on days 1, 3, 7, 14, and 21 after admission in 20 multiply
Injured patients (mean Injury Severity Score, 33). Ten patients
recovered uneventfully and ten developed a major Infection,
three of whom died. Trauma resulted In Immediate and pro-
found depression of both Interferon gamma production end
monocyte HLA-DR antigen expression compared with con-
trois. Interferon gamma remained below control levels for all
days on which It was measured in all patients. In uninfected
patients, interferon gamma production began to recover after
day 7 and interferon gamma levels on day 21 were greater
than on all other days. Monocyte HLA-DR antigen expression
returned to normal between days 7 and 14 in uninfected
patients, despite subnormal production of interferon gamma.
Failure to increase interferon gamma production and mono-
cyte HLA-DR antigen expression was associated with an
episode of major infection. We postulate that stimulation of
the Immune system early after injury may reverse the defects
reported end decrease the incidence of infection after severe
trauma.

(Arch Surg 1988;123:1309-1312)

he recognition that the severely injured patient has an
increased susceptibility to infection has led investiga-

tors to examine the phenomenon of posttraumatic immune

depression as a potential cause2 _ Monocytes are involved
in multiple facets of cell-mediated immunity, including

antigen presentation, phagocytosis, killing of microorga-

nisms, cytokine production, and the induction of cytotoxic

effector cells. 5.' The ability to endocytose and process

antigens is an early and critical step in initiating an immune

response. 7 Expression of class II major histocompatibility

complex (MHC) antigens (HLA-DR and related antigens)

are thought to be required for monocytes to present an

antigen to lymphocytes and act as accessory cells. *"
Over 80% of circulating peripheral blood monocytes

constitutively express HLA-DR antigen on their cell sur-

face. =,s The sequential determination of the percent of

monocytes that express HLA-DR antigen has been dem-

onstrated to be a useful marker in following the immuno-
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logic recovery of patients after injury. = Three distinct

patterns of monocyte HLA-DR antigen expression were

seen after severe trauma that separated patients who

recovered uneventfully from patients who developed an

episode of major sepsis or died. = Modulation of HLA-DR

antigen expression is regulated, in part, by interferon

gamma and, therefore, differences in monocyte HLA-DR

antigen expression observed in the peripheral blood mono-

cytes of injured patients may represent differences in the

ability to synthesize interferon gamma. '2 Pure cultures of

monocytes lose their HLA-DR expression after incubation
but can be induced to reexpress this antigen by the addition

of exogenous interferon gamma for T cells. 's.'_ Trauma

patients who have low monocyte HLA-DR antigen expres-
sion will also increase such expression when their mono-

cytes are cultured in vitro with interferon gamma."

Interferon gamma is a glycoprotein produced by acti-

vated lymphocytes in response to antigenic or mitogenic

challenges and is a potent regulator of monocyte function. '_

Interferon gamma has been shown to enhance expression

of MHC class I and class II antigens on monocytes; the

production of the monokines interleukin 1 (IL-1), tumor

necrosis factor, and granulocyte-monocyte colony-stimulat-

ing factor; and monocyte-phagocytosis and bactericidal

capability. '7 Decreased interferon gamma production has

been reported after thermal and nonthermal injury2 .'_
In the present study, we investigated monocyte

HLA-DR expression and the production of interferon

gamma after admission to hospital in 20 multiply injured
patients. Correlations between interferon gamma produc-

tion and monocyte HLA-DR expression were examined,

with specific attention given to the relationship between

recovery of these factors and infectious morbidity.

PATIENTS AND METHODS
Patient Selection

Twenty multiply injured patients admitted to the University of
Louisville Trauma Service from July to December 1987 were
studied. There were 17 men and three women, with a mean age of
33 years (range, 16 to 74 years). Injuries included four gunshot
wounds, four burns, and 12 blunt injuries (ten motor vehicle
accidents, one fall, one airplane crash). The mean Injury Severity
Score (ISS) was 33 (range, 16 to 59). Patients were studied serially
on days 1, 3, 7, 14, and 21 after admission. All patients underwent
operation either immediately or soon after admission. The mean
number of operative procedures performed was 3.4 per patient
(range, one to ten). Each patient's hospital course was observed
for major infection, which was defined as bacteremia, intra-
abdominal, or intrathoracic infections that required operative or
percutaneous drainage, burn-wound infection, or pneumonia.

Depressed Interferon Gamma Production_Livingston et al 1309

fl _4



Burn-wound infection was defined by the presence of greater than
10 _ organisms per gram of tissue on quantitative culture in the
presence of fever and leukocytosis, the histologic presence of
organisms invading normal skin on punch biopsy, or progressive
graft loss in the face of positive quantitative cultures. Pneumonia
was defined by positive sputum cultures for pathogenic organisms,
leukocytosis, fever, and the appearance of a new infiltrate on chest

roentgenogram.
Twenty healthy volunteers served as control subjects for the

determination of the normal range of interferon gamma production
and monocyte HLA-DR antigen expression.

Four patients undergoing minor operations (two rhinoplasties,
one chin augmentation, and one herniorrhaphy) were studied to
assess the effect of general anesthesia in patients with minimal
tissue trauma on HLA-DR antigen expression and interferon
gamma production. Blood was drawn for these studies just prior
to their operative procedure and 24 hours postoperatively.

Statistical analysis was done using a prior analysis of variance
followed by a Dunnetts, Tukey, or Student t test. (Significance
was set at P<.05.) This study was reviewed and approved by the
University of Louisville Human Studies Committee.

Interferon Gamma Production

Mitogen-stimulated interferon gamma was produced in cultures
of whole, unseparated blood, as described by Kirchner et al. _'
Venous blood was collected in tubes containing lithium heparin
(Beeton-Dickinson, Rutherford, NJ). The blood was diluted 1:10
with serum-free RPMI 1640 medium (GIBCO, Grand Island, NY)
supplemented with HEPES buffer (6 retool/L), tricene buffer
(3 mmol/L), gentamicin sulfate (50 mg/L), and glutamine salt
(2 mmol/L). One milliliter of the diluted blood was placed in plastic
tissue-culture tubes with 5 mg/L of phytohemagglvtimim-P
(Sigma, St Louis) and incubated at 37°C in 5% carbon dioxide for
24 hours. Following incubation, the supernatant was collected
after centrifugation and frozen at -70°C until assayed. The
interferon gamma level was measured in duplicate by a radioim-

munoassay (Centocor Inc, Malvern, Pa). This assay is specific for
interferon gamma alone and results are expressed in units of
interferon gamma per milliliter, based on the National Institutes
of Health (Bethesda, Md) reference standard for interferon
gamma.

Monocyte HLA-DR Expression

HLA-DR expression on peripheral blood monocytes was deter-
mined using fluorochrome-labeled monoclonal antibodies and flow
cytometry, as previously described. = Forty-microliter aliquots of
buffy coat cells prepared from acid-citrate-dextrose-anticoagu-
lated blood were stained for 20 minutes with the manufacturer's
specified dilution of antibody in the presence of 0.1% sodium
azide. Red blood cells were removed by hypotonic lysis and the
samples were preserved in 1% paraformaldehyde solution. Dual
staining was used in which monocytes were identified via the
labeled monoclonal antibody MO2 (Coulter Immunology, Hialeah,
Fla), and the HLA-DR antigen was identified via a second labeled
monoclonal antibody (Becton-Dickinson, Sunnyvale, Calif).

Samples were analyzed on a cytofiuoregraph IIS flow eytometer
(Ortho Diagnostic, Westwood, Calif) configured for simultaneous
two-color (red and green) fluorescent analysis. The forward-angled
and right-angled light-scattering properties of the leukocytes
enabled differentiation between lymphocytes, monocytes, and
neutrophils. The presence of HLA-DR was measured on mono-
cytes previously identified. A minimum of 200 monocytes were
analyzed for each sample. Results are expressed as the percent of
monocytes staining positive for HLA-DR.

RESULTS

Half of the patients studied developed an episode of
major infection. The sources of infection were the lungs in

seven, burn wound in three, thoracic and abdominal cavities

in two each, and major soft-tissue wounds in two. Six

patients had bacteremia, with organisms recovered from

another site of infection. Six of the ten patients had more

than one source of sepsis. The mean intensive care unit

and total hospital stays were 14 and 31 days, respectively.
The mean ISS was significantly greater in the infected
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patients compared with the noninfected patients (43 vs 25;

P<.05). Three patients died 30, 37, and 42 days, respec-

tively, after injury secondary to ongoing sepsis and multi-
ple-system organ failure.

The normal range for interferon gamma production was

28- + 13 _m/mL. General anesthesia without significant
tissue trauma was associated with minimal change in

interferon gamma production and monocyte HLA-DR ex-

pression. The mean preoperative value for interferon

gamma was 25 jxm/mL compared with the mean postoper-

ative value of 30 _m/mL.

Trauma had a profound and immediate effect on inter-

feron gamma production. In all injured patients, interferon

gamma levels remain below control levels for all days

studied (P<.05) (Table). In noninfected patients, interferon

gamma levels began to increase by day 14. Interferon

gamma production was significantly greater on day 21 than
on days 1, 3, 7, and 14 but remained well below that of the

controls. In infected patients, interferon gamma levels

were depressed markedly throughout the study period.
Inclusion of the three patients who died with the infected

patients did not significantly alter the pattern of interferon

gamma production.

The normal range for monocyte HLA-DR expression

was 89% - 4% and is comparable with previously reported

normal values. =.TMonocyte HLA-DR expression fell signif-

icantly after injury in both groups (Figure). Patients who

made an uneventful recovery exhibited return of HLA-DR

expression by day 14. In contrast, in patients who experi-

enced an episode of major infection, HLA-DR expression
never returned to normal. When the patients who died are

excluded, HLA-DR expression in the patients with major

infection increased only on day 21 compared with all

infected patients. This is similar to previously described

patterns of the recovery = of monocyte HLA-DR expression

and indicates that inclusion of the three patients who died
did not skew the results.

COMMENT

Monocytes express both class I (A, B, and C loci) and

class II (D locus) major histocompatibility antigens. Hu-
man MHC class II antigens are composed of DP, DR, DQ,

and DS subunits and are the equivalent of the immune-

response antigens (IA and IE) in the murine system. 5

Expression of MHC class II antigens is a necessary

condition for the monocyte to act as an accessory cell and

present antigen, although which specific subgroup or
groups of antigens are important remains unknown.*"

Gonwa et aP demonstrated that in a population of

HLA-DR-positive monocytes, cells that expressed
HLA-DS could present antigen and stimulate an autologous

mixed lymphocyte reaction better than HLA-DS-negative

cells. Expression of HLA-D antigens is a dynamic process,

and each subgroup has its own normal constitutive level of

expression. One study of freshly isolated human

monocytes demonstrated that HLA-DR, HLA-DQ, and

HLA-DP were expressed by 90%, 31%, and 19% of cells,

respectively. = Since HLA-DR is expressed with a greater

frequency than the other HLA-D antigens, down-regula-

tion and recovery of monocyte function may be best

assessed by changes in this antigen. The three patterns of

HLA-DR antigen recovery seen after injury in this study
demonstrate this hypothesis and explain why we chose to
measure this antigen. Monocyte cultures will lose their
HLA-DR antigen expression on incubation, which can be
restored by the addition of interferon gamma. Is,'' Inter-
feron gamma will also increase the expression of HLA-DQ

and HLA-DP antigens. _° Monocyte function, as measured

Depressed Interferon Gamma Production--Livingston et al



Interferon Gamma Production After Injury*

Interferon Gamma Production by Day After Injury

Patient Groups 1 3 7 14 21

Noninfected 5.0 +_1.1 3.4 _+1.4 3.5 _+0.7 7.2 _-.3.01- 16.1 _+4.3_:

Infected (all patients) 2.1 _+0.8 1.4_+0.4 2.1 -+0.7 3.2 + 1.0 3.9_ + 1.4

Infected (survivors only) 1.2 _+0.3 0.9 -+ 0.4 2.1 -+ 1.2 3.3 + 1.6 5.1 +_2.7

*All valuesare mean -+SEM. Controlsproduced27.6 -+3.4 U/mL of interferongamma.
1-P<.05 vs infectedpatients.
:I:P<.05vs days 1,3, 5, 7, and 14.

100

o_ 90 _.._

_ 70

.L+ i /_-..d._ , /,,_t_

,1-

30 I I I I

1 3 7 14 21

Days After Injury

Monocyte HLA-DR expression measured sequentially after injury
in uninfected patients (circles), all infected patients (open triangles),
infected patients exclusive of the three patients who died (solid
triangles), and controls (shaded area). Values are mean of percent
HLA-DR-positive monocytes (_ SEM). Dagger indicates P<.05,
infected patients vs controls; asterisk, P<.05, infected patients vs
controls and uninfected patients.

by IL-1 production, declines simultaneously with HLA-

DR expression after overnight culture and can also be

restored by the addition of exogenous interferon gamma.='

The close relationship between monocyte function, as

measured by IL-1 production, and MHC class II expres-
sion, as measured by HLA-DR expression, is further

evidence that cell-surface antigen expression is an impor-

tant marker of the ability of monocytes to function as

accessory cells.Although the correlation between mono-

cyte MHC class II expression and the presentation of a

class II restricted antigen is far from simple, it is clear

that the lack of class II antigen expression indicates that

the monocyte is probably impaired in its abilityto act as

an antigen-presenting cell.

Interferon gamma has numerous functions other than

the regulation of cell-surface expression of MHC anti-

gens.'6,'_Endogenous production of interferon gamma has
been linked to protection from viral infection.Mice that

are resistant to herpes simplex type I virus demonstrate
elevated interferon gamma titerscompared with suscepti-

ble mice." The inabilityto produce interferon gamma may

reflectan increased susceptibilityto infection.Prophylactic

administration of interferon gamma has been shown to

decrease mortality from bacterial and protozoan infec-

tions. = Interferon gamma given even after bacterial con-
tamination decreased the incidence of wound infection after

hemorrhagic shock _ and increased the survival from gram-
negative infection after laparotomy. = The patients in this

series who developed a major infection had consistently
lower interferon gamma levels than those who made an
uneventful recovery.

Both interferon gamma and monocyte HLA-DR expres-
sion were measured by assays using whole blood. Previous

studies of monoeyte MHC class II expression have used

monocytes separated by adherence to glass or plastic. 8

These maneuvers select a subset of the monocyte popula-

tion or cause activation of the cells resulting in changes of

HLA-DR antigen expression. _ The use of flow cytometric

analysis allows for the study of freshly isolated monocytes

that are subjected to minimal handling and the ability to

count thousands of cells, which decrease any potential

sampling errors. Although the use of whole blood makes it
impossible to dissect the mechanism of interferon gamma

depression after injury, we feel that this disadvantage is

outweighed by the fact that the assays were done in a more

physiologic situation. Serum from trauma patients has

been suggested as a factor in immunosuppression _ and,

therefore, a whole-blood assay may be more clinically
relevant.

It is unknown whether prolonged depression of inter-

feron gamma production and HLA-DR antigen expression

causes an increased susceptibility to infection or if second-

ary infection after injury results in sustained depression

of the variables measured. Mean ISS, as previously re-
ported, was higher in the group of patients who had

pro|onged immune depression and who developed a major

infection. 8 Our data show that normal monoeyte HLA-DR

antigen expression returns between seven and ten days

after injury in uninfected patients. Return to normal

HLA-DR antigen expression was not predicated by the

ability to produce normal levels of interferon gamma in

culture, since the highest levels of interferon gamma

produced in infected patients in this series were signifi-
cantly lower than those of the controls. Small amounts of

interferon gamma can increase HLA-DR antigen expres-
sion on monocytes, and "subnormal" levels of interferon

gamma may be sufficient to return HLA-DR antigen levels

to normal. TM It is also recognized that regulation of mono-

cyte HLA-DR antigen expression is not regulated by

interferon gamma aIone. 1' The failure to increase monocyte

HLA-DR antigen expression to the normal range by day

14 was associated with an episode of major infection. Polk

and associates = demonstrated that recovery of monocyte

HLA-DR antigen expression in patients who made an

uneventful recovery was significantly different from that

in patients who developed major infection. Our study

confirms that finding and demonstrates that the recovery
of interferon gamma production also shows a difference

between infected and noninfected patients. Increased pro-

duction of interleukin 2 8 and colony-stimulating factor _

have also been demonstrated to occur earlier in patients

who experience an uneventful recovery after injury than

in patients who develop infections.

In conclusion, we have demonstrated that severe injury

results in an alteration of monoeyte HLA-DR antigen

expression and interferon gamma production. Rapid recov-

Arch Surg--Vo1123, Nov 1988 Depressed Interferon Gamma Production--Livingston et al 1311



ery of monocyte HLA-DR antigen expression was associ-

ated with an uneventful recovery. Although interferon

gamma production remained below control levels for all

periods studied, uninfected patients showed a parallel

recovery of interferon gamma production with monocyte

HLA-DR antigen expression. The failure to increase inter-

feron gamma production and monocyte HLA-DR antigen

expression was associated with an episode of major sepsis
or death. These data lend support to the concept that

stimulation of the immune system early after injury,

possibly with interferon gamma, may be beneficial and
decrease the incidence of infection after severe trauma.

This study was supported in part by grant NAG 9-181 from the National
Aeronautics and Space Administration, Washington, DC.
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Discussion

GEORGE W. MACHIEDO, MD, Newark, N J: In light of the
continued problems that we face in the clinical outcome of patients
with sepsis, particularly when septic shock or multiple-system
organ failure develops, it is necessary to investigate methods of
prophylaxis as well as treatment. As we enter the last decade of
the 20th century, it is evident that new antibiotics and improved
organ-support systems will not provide the answers. It is also
evident from the plethora of studies that have been presented at
this meeting on the function and dysfunction of the monocyte-
macrophage system that this cell line is assuming a central position
in the problems of sepsis. It follows logically, then, that attempting
to define these changes and modulate them is a promising
mechanism for therapy.

This article is one of a series by Dr Livingston and his associates
clarifying the changes that occur in interferon gamma levels and
in the expression of the HLA-DR antigen on monocytes following
trauma. They clearly showed an association between an impaired
return to normal parameters and the development of subsequent
infection; however, I think that the measure of that relationship
still needs to be defined.

Dr Livingston commented that patients who were subsequently
infected were more severely injured. Could he comment on the
incidence or level of hypotension, since we have recently reported
(Ann Surg 1988;207:549-554) a high incidence of early bacteremia
within the first hour or two following trauma in patients who were
admitted with blood pressures below 80 mm Hg? Why should he
not be looking at the effect of this early bacteremia rather than a
predicted cause? Has he looked at the data in a different way? In
other words, has he looked at it not by outcome, as he presented,
but by the actual interferon levels, with the percent of HLA-DR-
positive cells to determine, particularly with the interferon, that
there is a critical level above which no subsequent infection occurs?

KENNETH L. BRAYMAN, MD, Philadelphia: I would be interested
in knowing whether there was a difference in blood transfusion or
the initial septic insult in the patients who went on to suffer more
severe degrees of sepsis vs those who got better and whether
there was any particular value in relationship to HLA-DR expres-
sion of the monocytes.

We know that activated T cells are the ones thought to produce
interferon gamma, which in turn stimulates the macrophage
HLA-DR expression, and I was wondering whether you looked at
HLA-DR expression on T cells relative to other data.

DR LIVINGSTON: I will answer the questions in reverse order.
We did look at the impact of blood transfusions in this study and
it appeared that the volume of blood transfusions really made no
difference, ie, there was no difference among the groups. We do
recognize that T cells do express HLA-DR antigens; however,
their influence on interferon gamma production is not known at
this time. It may be interesting to look at that in the future.

Dr Machiedo recognized the fact that perhaps the more severely
injured patients did, in fact, get infected; however, the group as a
whole was fairly injured. The levels of initial contamination from
the outside were equal. We do recognize that bacterial transloca-
tion occurs most often in the more severely injured patients, and
I really cannot comment about the possible theoretical basis of
the increased levels of internal contamination.

The critical levels of endogenous interferon gamma production
is unknown, and we did not try to answer that question, although
it is interesting. How much interferon gamma is sufficient? It was
interesting to us that HLA-DR expression returned to normal
long before interferon gamma production was normal. It appeared
that the body could definitely regulate these cell-surface antigens
while producing very small amounts of interferon gamma, as
observed in culture.
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Effects of Interferon-7 and Tumor Necrosis
Factor-c on Macrophage Enzyme Levels

SILVIA S. PIERANGELI and GERALD SONNENFELD

ABSTRACT

Murine peritoneal macrophages were treated with interferon- 7 (IFN-7) or tumor necrosis

factor-c_ (TNF). Measurements of changes in acid phosphatase and _-glucuronidase

levels were made as an indication of activation by cytokine treatment. IFN-7 or TNF--y

treatment resulted in a significant increase in the activities of both enzymes measured in

the cell lysates. This increase was observable after 6 h of incubation, but reached its max-

imum level after 24 h of incubation. The effect of the treatment of the cells with both

cytokines together was additive. No synergistic effect of addition of both cytokines on

the enzyme levels was observed.

INTRODUCTION

NTERVERONS (IFNs) ARE NATURALLY OCCURRING PROTEINS whose originally recognized function
was antiviral activity. _'_ However, considerable evidence has accumulated for a broader biologi-

cal role for IFNs. This includes: inhibition of proliferation of normal and malignant cells/TM en-

hancement of numerous macrophage functions including phagocytosis _'' and nonspecific tumorici-

dal activity, augmentation of natural killer cell activity/_ antiproliferative and immunomodulatory

activities, _6''_ and inhibition of multiplication of nonviral intracellular parasites. _8-''_

Another cytokine of interest is tumor necrosis factor-_ (TNF). TNF was recognized by Carswell

et al. c,2_ in 1975. It is characterized by its ability to produce hemorrhagic necrosis of certain mouse

transplanted sarcomas in vivo and has cytostatic/cytotoxic effects on mouse and human tumor cells

in vitro._'_-'6_ In addition, sera containing TNF have been reported to inactivate certain species of

malaria parasites in vitro and to protect mice against Klebsiella pneurnoniae and Listeria rnonocyto-

genes. _17_ Lately it has been demonstrated that TNF inhibits intracellular multiplication of Try-

panosoma brucei in rouTine peritoneal macrophages. _s_ TNF can also act as an immunomodulator

because it increases the cytotoxic and phagocytic activities of polymorphonuclear cells. _,9_ TNF and

IFN-7 have been shown to act in a synergistic fashion in some cases. A strong synergistic interac-

Department of Microbiology and Immunology and Department of Oral Health, Schools of Medicine and
Dentistry, University of Louisville, Louisville, KY 40292.
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tionbetweenbothcytokineshasalsobeenfoundwhentheircytotoxicactivitywasmeasuredoncer-
vical,breast,andovariancarcinomacelllines._2°-2'_

ThisstudywasdesignedtodeterminetheeffectsofIFN-_,andTNF treatment on levels of activ-

ity of acid phosphatase and #-glucuronidase in murine peritoneal macrophages. These enzymes can

serve as markers of macrophage activation. Czs_

MATERIALS AND METHODS

Preparation of Mouse Peritoneal Macrophages: Four- to six-week-old C57BI/6J mice were ob-

tained from Jackson Laboratories (Bar Harbor, ME). Mice were maintained in an AAALAC-ac-

credited facility according to NIH guidelines under the direct supervision of a veterinarian. The ab-

domen of each animal was thoroughly swabbed with alcohol and the skin deflected so as to expose

fully the peritoneal wall. The peritoneum was lavaged by injection of 5 ml of sterile RPMI 1640 me-

dium (GIBCO Labs, Grand Island, NY), supplemented with 10% heat-inactivated fetal bovine

serum (GIBCO), 100 IU/ml penicillin, and 100 _g/ml streptomycin. After gentle abdominal mas-

sage, the peritoneal fluids were collected aseptically. _ The cells were washed three times with me-

dium for 10 min, and resuspended in the same medium. The nucleated cells were counted micro-

scopically by using an hemacytometer and were adjusted to 10 viable celis/ml. Viability was assayed

by the trypan blue dye exclusion test. Aliquots (0.8 ml) were placed in Lab-tek tissue culture cham-

ber (Becton-Dickinson, Inc., Oxnard, CA) and incubated for 24 h at 37°C in 5% CO2. Nonadher-

ent ceils were then removed by flushing the culture chambers vigorously with fresh medium several

times.

Lysis of Macrophages: The cell monolayers were treated for 10 min with 0.8 ml of 0.1% Triton-

XI00 (Sigma Chemical Co., St. Louis, MO) in 0.05 M HCI and 0.15 M NaCI. ¢27_

Cytokines: Murine IFN-._, produced by recombinant DNA technology, was a gift of Genentech,

Inc. (South San Francisco, CA), and supplied at a specific activity of 0.68 x 10 _ U/mg of protein.

A stock solution was made in culture medium containing 1,000 U/ml. Dilutions were made up im-

mediately before use in the experiments (30, 100, and 1,000 U/ml). Human TNF, produced by re-

combinant DNA technology, was also kindly provided by Genentech, Inc. South San Francisco,

CA) at a specific activity of 5.02 × 10 _ U/mg of protein). A stock solution of 10,000 U/ml was

made in culture medium and kept in the refrigerator until use. Solutions of 30, 100, and 1,000 U/

ml were prepared immediately before use. Both IFN-'r and TNF were assayed for endotoxin by As-

sociates of Cape Cod, Inc. (Woods Hole, MA) and no inhibition was observed.

Enzymatic Assays." Acid phosphatase (E.C. 3.1.3.2.) and B-glucuronidase (E.C. 3.2.1.31) were

assayed in lysates using commercially available kits from Sigma Chemical Co. (St. Louis, MO).

Acid phosphatase was expressed in IU/liter and _-glucuronidase in modified U/ml.

General Assay Procedure: After 24 h of incubation in the plastic plates, nonadherent cells were

removed by flushing the plates vigorously. At this point the cells were ready for use. The macro-

phages were then incubated for 6 or 24 h with medium or with cytokines in three different concen-

trations, either alone or together or with the supernatant from the absorption with specific anti-

body anti-iFN. After this incubation at 37°C 5% CO2, the cells were washed twice with medium

and once with sterile phosphate-buffered saline (PBS) and lysed as described previously. Lysates

were frozen at -70°C until the enzymatic assays were done.

Neutralization of 1FN--r with Monoclonal Antibody against 1FN-,y: Monoclonal antibody was

obtained from the hybridoma cell line R4-6A2, kindly provided by Dr. Edward E. Havell (Tru-

deau Institute, Inc., Saranac Lake, NY).C2"_ Hybridoma cells were cultured in minimal essential me-

2
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dium (GIBCO Labs, Grand Island, NY), supplemented with 1007o fetal bovine serum, antibiotics,

glutamine, and 1 mM sodium pyruvate in a 707o COL atmosphere. Supernatants from culture were

concentrated to 15 mg/ml, determined by spectrophotometric readings. The antibody was dialyzed

exhaustively in phosphate buffer (0.2 M, pH 7.6). The following standard immunoadsorbent proce-

dure was used for inactivation of IFN-_/. _29J The antibody was polymerized with glutaraldehyde

(Sigma Chemical Co., St. Louis, MO) in a proportion protein/glutaraldehyde of 1:5. After 24 h the

gel was broken in a tissue homogeneizer and washed exhaustively. The broken gel was then incu-

bated with continuous rotation for 24 h at 4°C with an equal volume of IFN-y at a concentration

of 30 U/ml. The mixture was centrifuged at 3,000 rpm for 10 min and the supernatant was kept at

4°C and then assayed for IFN- T activity. _29_

Statistics: The results were subjected to Student's t test to determine whether or not there was a

significant difference between the averages of enzymatic determinations with cytokines and the

controls. _26_ Alpha was set a priori at p < 0.05.

RESULTS

Effect of the treatment of mouse peritoneal macrophages with IFN-T on the

activities of [3-glucuronidase and acid phosphatase in lysates

Mouse peritoneal macrophages were treated with different concentrations of IFN--_ (30, 100, and

1,000 U/ml), and after 24 h of incubation they were washed and treated with medium, according to

procedure described in Materials and Methods, The enzymatic activities were measured in lysates

(Table 1). When IFN--y-treated cells were compared with medium-treated cells, there was an in-

crease of 4.4-, 5.7-, and 7.1-fold in the activity of _-glucuronidase for 30, 100, and 1,000 U/ml, re-

spectively. When acid phosphatase was measured, cells treated with IFN-7 showed an increase of

2.5-, 2.6-, and 2.8-fold over the cells treated only with medium.

Effect of the treatment of murine peritoneal macrophages with TNF on the

activities of (3-glucuronidase and acid phosphatase in cell lysates

In this case, cells were treated with three different concentrations of TNF, 30, 100, and 1,000

U/ml, as described in Materials and Methods. Enzymatic activities were determined in lysates

(Table 2). When cells treated with TNF were compared with cells treated with medium, there was

an enhancement of B-glucuronidase activity of 4.5-, 5.6-, and 5.4-fold for 30, 100, and 1,000 U/ml

of TNF, respectively. TNF-treated cells showed an increase of 1.6-, 2.0-, and 1.5-fold increase in

the activity of acid phosphatase, when compared with medium-treated cells, at the three different
concentrations mentioned above.

TABLE 1. EFFECT OF THE TREATMENT OF MOUSE PERITONEAL MACROPHAGES WITH

IFN-_¢ ON THE ACTIVITY OF /3-GLucURONIDASE AND ACID PHOSPHATASE a

f3-Glucuronidase activity Acid phosphatase activity

Treatment (U/mO (IU/fiter)

Medium 12.7 + 2.2 0.70 + 0.06

IFN-_ 30 U/ml 70.5 _ 5.6b 1.75 ± 0.10 b

IFN-T 100 U/ml 72.7 + 5.2 b 1.79 ± 0.lib

IFN--,/ 1,000 U/ml 90.2 + 2.7b 1.89 :t= 0.03 b

aResults are expressed as the mean of five experiments _: standard error of the mean.

bp < 0.05.
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TABLE2. EFFECT OF TREATMENT OF MOUSE PERITONEAL MACROPHAGES WITH TNF

ON THE ACTIVITY OF fl-GLucURONIDASE AND ACID PHOSPHATASE IN CELL LYSATES a

13-Glucuronidase activity Acid phosphatase activity
Treatment (U/mO (IU/liter)

Medium 15.75 4- 3.7 0.68 ± 0.16

TNF 30 U/ml 70.50 4- 1.5 b 1.11 ± 0.19b

TNF 100 U/ml 88.50 4- 1.5 b 1.37 ± 0.33 b

TNF 1,000 U/ml 85.50 4- 1.6 b 1.02 4- 0.02b

aResults are expressed as the mean of five experiments ± standard error of the mean.
bp < 0.05.

Effect of combined treatment of mouse peritoneal macrophages with IFN-7 and

TNF on the activities of fl-glucuronidase and acid phosphatase

Murine peritoneal macrophages were treated with medium or with a mixture of both cytokines at

final concentrations of 30, 100, and 1,000 U/ml of each cytokine for 24 h. The enzymatic activities

were determined in lysates (Table 3). Macrophages treated with both cytokines at the three differ-

ent concentrations showed a pattern of increase in fl-glucuronidase of 8.2-, 10.7-, and 13.0-fold.

When acid phosphatase was measured in iysates, cells treated with both cytokines simultaneously,

the enhancement was 4.1-, 4.2-, and 4.4-fold at concentrations of each cytokine of 30, 100, and

1,000 U/ml.

Effect of anti-IFN-7 on the enhancement of activities of fl-glucuronidase

and acid phosphatase induced by IFN-_¢

IFN-3, was mixed with anti-IFN-,/, and then cells were treated with antibody-neutralized-IFN or

with medium and/or TNF (30 U/ml) for 24 h. The enzymatic activities were analyzed in lysates

(Table 4). In both experiments enhancement of fl-glucuronidase and acid phosphatase by IFN-3,

was abrogated totally by antibody treatment. Furthermore, cells treated with TNF retained the en-

zyme activation that was due to TNF. Effect of time of incubation of cytokines on the activity of

fl-glucuronidase in mouse peritoneal macrophages.

Macrophages were incubated with IFN-'r or TNF for 6 or 24 h, and then washed and lysed for

enzymatic analysis. At 6 h, the activity of B-glucuronidase induced by 1FN- 7 was loser in all sam-

ples than in the corresponding sample at 24 h of incubation (Fig. I). After 6 h of treatment with

TNF the values were 80-90% of the ones obtained with 24 h of incubation (Fig. 1).

TABLE 3. EFFECT OF COMBINED TREATMENT OF MOUSE PERITONEAL MACROPHAGES WITH IFN-3' AND

TNF ON THE ACTIVITY OF fJ-GLucURONIDASE AND ACID PHOSPHATASE IN LYSATES a

fl-Glucuronidase activity Acid phosphatase activity

Treatment (U/ml) (IU/liter)

Medium

IFN 30 units + TNF 30 units

IFN 100 units + TNF 100 units

1FN 1,000 units + TNF 1,000 units

15.75 + 3.8 0.68 4- 0.16

129.00 4- 30.0 b 2.99 4- 0.43 b

168.00 4- 22.5 b 2.90 4- 0.20b

206.25 + 36.6b 2.14 ± 0.36 b

aResults are expressed as the mean of five experiments a: standard error of the mean.
bp < 0.05.
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TABLE 4. EFFECT OF INACTIVATION OF IFN-7 BY TREATMENT WITH ANTI-IFN-7 ON THE ACTIVITY OF

_-GLucURONIDASE AND ACID PHOSPHATASE IN LYSATES OF Mouse PERITONEAL MACROPHAGES a

_-Glucuronidase Acid phosphatase

Treatment activity (U/mO activity (IU/liter)

Medium

IFN-7 30 units + anti-IFN--_

IFN-? 30 units + anti-lFN-? + TNF 30 units

15.75 + 3.7 0.84 + 0.03

12.75 _: 2.2 0.85 ± 0.09

56.50 -_ 6.5 b 1.44 ± 0.30b

aResults are expressed as the mean of five experiments _: standard error of the mean.
bp < 0.05.
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FIG. 1. Effect of time of incubation with IFN-.,/and TNF on the activity of/3-glucuronidase in

lysates of mouse peritoneal macrophages. Treatment A, IFN-? 30 U/ml (6 h); treatment B, IFN-3,

30 U/ml (24 h); treatment C, TNF 30 U/ml (6 h); treatment D, TNF 30 U/ml (24 h); treatment E,
medium.

Effect of time of incubation of cytokines on the activity of acid phosphatase in lysates

Macrophages were incubated with IFN-3, or TNF for 6 or 24 h followed by washing and lysis.

Acid phosphatase activity was tested in lysates. When IFN-_/was used as the stimulating cytokine,

the values obtained at 6 h of incubation were lower (40-60%) than the ones obtained with 24 h of

incubation (Fig. 2). With TNF, there was no difference between 6 h and 24 h of incubation (Fig. 2).

DISCUSSION

Activated macrophages possess properties exceeding, qualitatively or quantitatively, the baseline

values exhibited by resident macrophages. Although there seem to be a variety of biochemical cri-

teria to describe the state of activation in mouse peritoneal macrophages, several parameters have
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FIG. 2. Effect of time of incubation with IFN-3, and TNF on the activity of acid phosphatase in

lysates of mouse peritoneal macrophages. Treatment A, IFN-y 30 U/ml (6 h); treatment B, IFN-y

30 U/ml (24 h); treatment C, TNF 30 U/ml (6 h); treatment D, TNF 30 U/ml (24 h); treatment E,
medium.

been used to describe this particular status. These include enzyme synthesis and secretion, as well as

functional capacities. C3'_

In the present study, the enhancement of the activity of two macrophage hydrolases by cytokine

treatment was used as a method to determine the in vitro activation of such cells. IFN-y or TNF

treatment produced a significant increase in levels of/3-glucuronidase and acid phosphatase. Fur-

thermore, a dose of 100 U/ml of TNF appeared to be most effective in raising enzyme levels. This

dose could have been most effective due to a cytotoxic effect of TNF at higher concentrations.

It has been demonstrated that lipopolysaccharide (LPS) by itself is a potent stimulator of macro-

phages. _32_LPS can be present in some preparations of recombinant cytokines as a product of the

DNA technology, when the gene is cloned in bacteria. However, the possibility of LPS playing a

role in the present study was minimized, as the activity of the IFN was completely abrogated by

treatment with specific monoclonal antibody, and the IFN-y and TNF preparations appeared to be

free of LPS. Control experiments were carried out with the same batches of medium in which the

cytokines were prepared. These results suggest that the activity observed was due to IFN-y, and not
LPS.

Macrophages treated for 6 h with IFN-,,/were activated up to 40-60°70 of maximum for/3-glucu-

ronidase and acid phosphatase production. However, maximum effect was not observed until 24 h

of incubation. Morland et aL have demonstrated similar results, and they also found that pro-

longed treatment for 48-72 h could produce a decrease in the enzymatic levels.(25) However, in the

present study when the cells were incubated with TNF, maximum acid phosphatase activity and

80% of the maximum _-glucuronidase activity was reached by 6 h of incubation. Therefore, it is

possible that each cytokine may utilize a different mechanism of activation.

It is becoming apparent that both IFN-,), and TNF have a complex pattern of interaction. Several
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synergisticinteractionsbetweenIFN-yandTNFhavebeenreported.Forexample,theBI6mela-
nomacelllineisnotsensitivetoTNFunlessit isappliedincombinationwithIFN-y._3_Synergistic
effectsbetweenbothcytokineshavebeendescribedregardingtheantiproliferativeresponsein vivo

and in vitro systems, and in the production of Class I and Class II histocompatibility antigens.C3"_

The molecular mechanism of the synergistic effect is not well understood. However, some investi-

gators _3_ have demonstrated that in several target cell types, short-term inhibition of target cell

protein or energy metabolism caused a highly accelerated cytolisis. It has also been postulated _'_

that IFN-3, renders target cells more sensitive to TNF lysis by some form of alteration in the cell

membrane structure, perhaps through the exposure of a TNF-binding receptor. In the present

study, the effect of incubation of both cytokines together was additive rather than synergistic re-

garding the enzymatic activities in the lysates. Although the use of additional cytokine concentra-

tions could possibly yield different results, the present data suggest that a generalization that TNF

and IFN-y will act synergistically in all systems cannot be made. This is supported by the recent ob-

servation that TNF is associated with macrophage killing of Mycobacterium avium complex, but

that IFN- 7 plays no role in this act. c37_

It should be noted that the TNF available to be used in this study was human. We chose to use

the human TNF and routine IFN-y because the bulk of studies showing synergy have used this

combination.C'9'_°'33 J,_ Even though human TNF is cross-reactive in mouse cells, it is still a foreign

protein and it is possible that different results could be obtained using murine TNF in the system

used in the present study.

The results of the present study indicate that both IFN-y and TNF can activate macrophages as

indicated by enhancement of _-glucuronidase and acid phosphatase activities. The significance of

this activation and possible interactions between IFN-7 and TNF in an in vivo model of infection

remains to be established.

ACKNOWLEDGMENTS

This work was supported in part by grant number NAG9-81 from the U.S. National Aeronautics

tics and Space Administration. S.S,P. was supported by a Fulbright Scholarship.

The authors would like to thank Genentech, Inc. and Dr. Christine Czarniecki for their gifts of

interferon- 7 and tumor necrosis factor-ct. We would also like to thank Dr. E.A. Havell of Trudeau

Institute, Inc. for his gift of RA-642 cell line that produces monoclonal antibody to interferon- 7.

REFERENCES

1. BILLIAU, A. (1984). Interferon 1. General and Applied Aspects. Amsterdam: Elsevier Science Publish-

ers, B.V.

2. STEWART, W.E., GRESSER, 1., TOVEY, M.G., BAND, M.T., and GOFF, L.F. (1976). Identification

of the cell multiplication inhibition factors in interferon preparations as interferons. Nature 262, 300-302.

3. BALKWILL, F.R., and OLIVER, R.T.D. (1977). Growth inhibitory effects of interferon on normal and

malignant human hematopoietic ceils. Int. J. Cancer 20, 500-505.

4. NATHAN, C., PRENDGAST, T.J., WEIBE, M.E., STANLEY, R.E., PLATZER, H.G., WELTE, K.,

RUBIN, B.H., and MURRAY, H.W. (1984). Activation of human macrophages: Comparison of other

cytokines with interferon-% J. Exp. Med. 160, 600-605.

5. OEHLER, J.R., LINDSAY, L.R., NUNN, M.E., HOLDEN, H.T., and HERBERMAN, R.B. (1978).

Natural cell mediated cytotoxicity in rats. In vivo augmentation of NK cell activity. Int. J. Cancer 21,
210-220.

6. HUANG, H., and DONAHUE, R.M. (1975). Further observations on the macrophage activating property

of interferons, in: Effects of Interferons on Cells, Viruses and Immune System. A. Geraldes (ed.). Lon-

don: Academic Press, pp. 381-400.



PIERANGEL! AND SONNENFELD

7. BUFFET, R.F., ITO, M., CAIRO, A.M., and CARTER, W.A. (1978). Antiproliferative activity of

highly purified interferon. J. Natl. Cancer Inst. 60, 243-246.

8. SCHULTZ, W.W., HUANG, K.Y., and GORDON, F.B. (1968). Role of interferon in experimental

mouse malaria. Nature 20, 709-710.

9. KAZAR, J., GILMORE, J.D., and GORDON, F.B. (1971). Effect of interferon and interferon inducers

on infection with a non-viral intracellular microorganism Chlarnydia trachomatis. Infect. lmmun. 3, 825-
832.

10. GOBER, L.L., FRIEDMAN-KEIN, A.E., HAVELL, E.A., and VILCEK, J. (1972). Suppression of the

intracellular growth of Shigella flexneri in cell cultures by interferon preparations and polyinosinic-poly-

cytidylic acid. Infect. lmmun. 5, 370-376.

11. KAZAR, J., KRAUTWURST, P.A., and GORDON, F.B. (1971). Effect of interferon and interferon in-

ducers on infection with a non-viral intracellular microorganism, Rickettsia akari. Infect. Immun. 3,
819-824.

12. CARSWELL, E.A., OLD, L.J., KASSELM, R.L., GREEN, S., FIORE, N., and WILLIAMSON, B.

(1975). An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA

72, 3666-3670.

13. GREEN, S., DOBRJANSKI, A., CHIASSON, M.A., CARSWELL, E.A., SCHWARTZ, M., and OLD,

L.J. (1977). Corynebacterium parvum as the priming agent in the production of tumor necrosis factor in

the mouse. J. Natl. Cancer Inst. 59, 1519-1522.

14. HELSON, L., GREEN, S., CARSWELL, E.A., and OLD, L.J. (1975). Effect of tumor necrosis factor

on cultured melanoma cells. Nature 258, 731-732.

15. MANNEL, D.L., MELTZER, M.S., and MERGENHAGEN, S.E. (1980). Generation and characteriza-

tion of a LPS-induced and serum-derived cytotoxic factor for tumor cells. Infect. lmmun. 28, 204-211.

16. KEELL, F.C., and CUETRACASAS, M.J. (1981). Preliminary characterization of the tumor cell cyto-

toxin in tumor necrosis serum. J. Immunol. 126, 1279-1283.

17. JAHIEL, R.I., VILCEK, J., and NUSSENZWEIG, R.S. (1970). Exogenous interferon protects mice

against Plasmodium berghei malaria. Nature 227, 1350-- 1351.

18. DE TITTO, E.H., CATTERALL, J., and REMINGTON, J.S. (1986). Activity of recombinant tumor ne-

crosis factor on Toxoplasma gondii and Trypanosoma cruzi. J. lmmunol. 137, 1342-1345.

19. SHALABY, M.R., AGGARWAL, B.B., RINDERKNECHT, E., SVEDERSKY, L.P., FINKLE, B.S.,

and PALLADINO, M.A. (1985). Activation of human polymorphonuclear neutrophil functions by inter-

feron- 7 and tumor necrosis factor. J. Immunol. 135, 2069-2073.

20. FRANSEN, L., VAN DER HEYDEN, J., RUYSSKAERT, R., and FIERS, W. (1986). Recombinant tu-

mor necrosis factor: Its effects and its synergism with IFN-7 on a variety of non and transformed cell

lines. Eur. J. Cancer Clin. Oncol. 22, 419-426.

21. TAGUCHI, T., KIMOTO, Y., TANJI, Y., ABE, S., NAKANO, K., and SOHMURA, Y. (1987). Aug-

mentation of cytotoxic activity of recombinant human tumor necrosis factor by recombinant human inter-

feron-'t. J. Biol. Resp. Modif. 6, 599-609.

22. WILLIAMSON, B.D., CARSWELL, E.A., RUBIN, B.Y., PREDERGAST, J.S., and OLD, L.J. (1983).

Human tumor necrosis factor produced by human B-cell lines: Synergistic cytotoxic interaction with

human interferon. Proc. Natl. Acad. Sci. USA 80, 5397-5401.

23. LEE, S.H., AGGARWAL, B.B., RINDERKNECHT, E., ASSISI, F., and CHIU, H. (1984). The syner-

gistic antiproliferative effect of 7-interferon and human lymphotoxin. J. Immunol. 133, 1083-1086.

24. STONE-WOLFF, D.S., YIP, Y.K., KELKER, H.C., LE, J., HENRIKSEN-DESTEFANO, D., RUBIN,

B.Y., RINDERKNECHT, E., AGGARWAL, B.B., and VILCEK, J. (1984). Interrelationships of human

interferon-gamma with lymphotoxin and monocyte cytotoxin. J. Exp. Med. 159, 828-843.

25. MORLAND, B., and MORLAND, J. (1978). Selective induction of lysosomal enzyme activities in mouse

peritoneal macrophages. J. REtic. Endothel. Soc. 23, 469-477.

26. KIERSZENBAUM, F., and SONNENFELD, G. (1984). Interferon-.,/inhibits cell infection by 7". cruzi. J.

lmmunol. 132, 905-908.

27. STADLER, B., and WECK, A. (1980). Flow-cytometric analysis of mouse peritoneal macrophages. Cell

Immunol. 54, 36-48.

28. SPITALNY, G.L., and HAVELL, E.A. (1984). Monoclonal antibody anti-murine interferon-gamma in-

hibits lymphokine-induced antiviral and macrophage tumoricidal activities. J. Exp. Med. 159, 1560-1565.

29. AVRAMEAS, S., and TERNYNCK, T. (1969). The cross-linking of proteins with glutaraldehyde and its

use for the presentation of immunoadsorbants. Immunochemistry 6, 53-66.

30. ZAR, J. (1983). Biostatistical Analysis, 2nd ed. Englewood Cliffs, N J: Prentice-Hall, Inc.



EFFECT OF CYTOKINES ON MACROPHAGE ENZYME LEVELS

31. STANTON, G., AXLINE, M.D., and ZANVIL, C. (1970). In vitro induction of lysosomal enzyme by

phagocytosis. J. Exp. Med. 131, 1239-1260.

32. McGIVNEY, S., and BRADLEY, S.G. (1977). Enhanced lysosomal enzyme activity in mouse cells treated

with bacterial endotoxin in vitro. Proc. Soc. Exp. Biol. Med. 155, 390-394.

33. FIERS, W., BROUCKAERT, R., GUISEZ, Y., REMAUT, E., VANROY, E., DEVOS, R., FRANSEN,

L., GUERT, L.R., MARMENOUR, A., TAVERNIER, J., and VAN DER HEYDEN, J. (1986). Recom-

binant IFN-'_ and its synergism with TNF in the human and mouse systems, in: The Biology of the Inter-

feron System 1985. W.E. Stewart and H. Schellekens (eds.). Amsterdam: Elsiever Scientific Publishers,

B,V., pp. 241-248.

34. CHANG, R., and LEE, S.H. (1986). Effects of IFN-- t and TNF-u on the expression of la antigen on a

macrophage cell line. J. Immunol. 137_ 2853-2856.

35. WILLIAMS, T.W., and BELLANTI, J.A. (1983). In vitro synergism between interferons and human

lymphotoxins: Enhancement of lymphocyte-induced target cell killing. J. lmmunol. 130, 582-586.

36. CHANY, C. (1981). Interaction of interferon with the cell membrane and the cytoskeleton. Lymphokines

4, 409-431.

37. BURMUDEZ, L.E.M., and YOUNG, L.S. (1988). Tumor necrosis factor, alone or in combination with

IL-2, but not IFN-3,, is associated with macrophage killing of Mycobacterium avium complex. J. Immu-

nol. 140, 3006-3013.

Address reprint requests to:

Dr. GeraM SonnenfeM

Department of Microbiology and Immunology

School of Medicine

University of Louisville

Louisville, KY 40292

Received 31 May 1988/Accepted 16 August 1988





FROM: Future Development of Interferon - Proceedings, POST-ISIR Sumiferon Symposium

Sumitomo Pharmaceuticals Co., Ltd., Osaka, 1989

INTERFERONS AND MICROBIAL INFECTIONS

Gerald Sonnenfeld

Running Title: IFNs and Microbes

Department of Microbiology and Immunology

and Department of Oral Health.

Schools of Medicine and Dentistry, University of Louisville.

Louisville. Kentucky 40292. USA

ABSTRACT

Interferons have been shown to be involved in several non-viral, microbial infections.

These include both protozoan parasite and bacterial infections. Interferons have been

shown to be induced during those infections and to alter the course of the infections.

The mechanism for the effects of interferons on non-viral microbial infections may

involve the modulation of immune responses. Many different types of immune responses

can be affected by interferons, and this may affect host defenses against microbial

infections. Many exciting research areas are developing for the study of this intriguing

property of interferons.

INTRODUCTION

Interferons (IFNs) were described originally as antivirals (1). However. in recent

years it has become clear that IFNs can affect the outcome of several different non-

viral microbial pathogens. Recent studies have shown that IFNs have several activities

in addition to the antiviral activity, and it is possible that these additional activities

could contribute to the anti-microbial effects of IFNs. One of the most significant of

those activities is modulation of immune responses (2). As natural IFNs have been purified

and pure IFNs have been produced by recombinant DNA technology, it has become

apparent that the IFNs themselves are responsible for the immunomodulatory activities

that have been observed (2). As a result of its immunomodulatory properties. IFNs could

play major roles in resistance to various microbial infections.

TABLE 1 TYPES OF INTERFERONS

IFN-ALPHA leukocyte type I

IFN-BETA fibroblast type I

IFN-GAMMA immune type II

It is now clear that all three types of IFNs (IFN-alpha, IFN-beta. and IFN-gamma)

have immunomodulatory properties (Table 1). IFN-alpha is produced primarily by

lymphocytes in response to viruses, double-stranded RNAs. lipopolysaccharide and other

non-specific inducers (3). Several sub-species of IFN-alpha have been shown to exist

as a results of cloning of the genes (3). IFN-beta is produced by _fi_;)z.ob_sts in response



to the same types of inducers as IFN-alpha (3). In rodents, it is difficult to separate
these two types of IFN,and they are often referred to as IFN-alpha/beta. The third
type of IFN, IFN-gamma, is an actual product of cell-mediated immune responses.
IFN-gamma is produced by sensitizedT-lymphocytes in response to specific antigen.
or by T-lymphocytes in response to a mitogen such as phytohemagglutinin or con-
canavalin-A(3). These IFNsdiffer from each other with regardto antigenicity, structure,
and the genetic information coding for the proteins (3).

The IFNs have all been shown to have a variety of immunomodulatoryactivities
(Table 2). In both humanand animalmodels.IFNshavebeenshown to modulateantibody
production(4. 5). When IFN-alpha/betaor inducersof IFN-alpha/beta were administered
to mice at the time of or prior to sensitizationof the mice with sheepred blood cells,
the plaque forming cell responsewas suppressed(6-15). This type of responsewas
found to occur both in vitro and in vivo. and when the dose of IFN- alpha/ beta was

reduced or when IFN was administered after sensitization with antigen, antibody production

was enhanced (7-9). Similar results were observed using human in vitro systems (16,

17). Therefore, IFN- alpha/ beta had a time and dosage dependent effect on antibody

production. This would suggest a truly immunoregulatory role for IFNs, as the same

substance in the same system can enhance or suppress an immune response.

TABLE 2 IMMUNOMODULATORY ACTIVITIES OF INTERFERONS

1. Modulation of antibody production

2. Modulation of delayed hypersensitivity/cell- mediated immunity'

3. Regulation of cell surface antigen expression

4. Activation of Natural Killer cells

5. Activation of macrophages

6. Interaction with other cytokines

(interleukin- 2. tumor necrosis factor)

Similar results were observed using IFN-gamma or inducers of IFN-gamma (18-

20). In the case of IFN-gamma, much smaller doses of IFN-gamma were required to

observe the same effects as with IFN- alpha/ beta. suggesting that IFN-gamma might

be a more potent immunoregulatory agent. Modulation of antibody responses by IFN

-gamma was also time and dosage dependent in a similar fashion to what has been

reported for IFN- alpha/ beta (18-20). B cells might have been affected directly by

the IFN-gamma preparation (20).

IFNs can also affect the cell-mediated immune response. Administration of IFN-

alpha/beta resulted in an inhibited delayed hypersensitivity response to sheep red blood

cells in mice (21).

In addition, IFNs have been shown to play a crucial role in regulation of the response

of natural killer cells (22-28) in humans and rodents (Table 2). Natural killer cells

are naturally cytotoxic to infected or tumor cells. The presence of IFNs augments

dramatically the activity of natural killer cells (22-28). IFNs-alpha and -beta may be

most effective in activating natural killer cells. It should be noted that treatment of

tumor target cells with IFN results in protection of those cells from natural killer cells



(22). This is additional evidence for a natural immunoregulatoryrole for IFN where
presenceof the IFN at a specific time and placeduring the developmentof an immune
response could result in a differing end result.

IFNs have also been shown to regulate macrophageactivation (29-35). All IFNs
have been shown to be able to regulate macrophageactivation in rodent and human
systems,but IFN-gammaappears to be most effective in activating macrophages.The
activation appears to result in enhanced phagocytosis,and in some cases,enhanced
killing of tumors or microbial pathogens (29-35).

There are several possible mechanisms for modulation of immune responses by
IFNs.There can be direct effects of IFNs on cells, or interactions of IFNs with other
cytokines.

IFNs could affect directly the maturation, activation and development of cells
important in immune responses. As stated above. IFNs can regulate the maturation
of B cells, thereby resulting in the regulation of antibody responses(36).

One of the most fascinating potential mechanismsfor IFNs to regulate immune
responses is through the expression of cell surface antigens (Table 2). In a series
of experiments first carried out by Gresser and his associates(37-41), IFN-alpha/
beta was shown to be able to enhanceexpressionof class [ histocompatibilityantigens
on the surface of cells. Later, IFN-gamma was shown to have a similar effect (42).
Regulationof expressionof class | histocompatibilityantigenscould affect the efficiency
by which cytotoxic T-lymphocytes interact with targets such as tumor cells or infected
cells. IFNscan also modulatelevelsof expressionof Fc receptorson cells(43). Alterations
in these receptors could affect the ability of a host to mount several immuneresponses
involving these receptors such as allergic responsesinvolving IgE.

IFN-gammacan also regulate the expressionof class ][ histocompatibilityantigens
on a variety of cell types (42, 44-48). The class ]] histocompatibility antigens play
a fundamental role in foreign antigen presentation from macrophagesto lymphocytes.
Therefore,the ability of IFN-gammato regulatetheir level could result in a fundamental
immunoregulatory role for IFN in a wide variety of immune responses.

In addition IFNs have been shown to interact and regulate production of a wide
variety of other cytokines.These include interleukin-2 and tumor necrosis factor-alpha
(49-51). As a result of this interaction, IFNs could play a major role in the regulation
of immune responses by regulating the duration and extent of such responses.

It is. therefore, possible that IFNs could be major regulators of native immune
responsesin a host. If IFNsdo play such a natural role. then it is possible that IFNs
could regulate resistanceto infection with a wide varietyof pathogens.Thesepathogens
could include a range of organismsfar beyondthe viruses for which IFNswere originally
thought to be active. I shall now describeexperimentsusing mouse modelsof infection
carried out in conjunction with my laboratory to explore the role of IFNs in resistance
to protozoan parasite and bacterial infections (Table 3).



TABLE3 MICROBIALINFECTIONSAFFECTEDBY INTERFERONS
STUDIEDIN THE AUTHOR'SLABORATORY

BACTERIAL :

Salmonella typhimurium

Eschedchia coli

Staphylococcus aureus

Klebsiella pneumoniae

PARASITIC :

Trypanosoma cruzi

Trypanosoma brucei

Naegleria fowled

INTERFERONS AND MICROBIAL INFECTIONS

Studies in my laboratory have been directed towards two protozoan parasites,

Trypanosoma cruzi, the intracellular South American trypanosome, and Trypanosoma brucei

rhodesiense, an extracellular African trypanosome. IFNs appear to be able to be involved

in the course of both the intracellular and extracellular infections.

T. cruzi is the cause of Chagas' disease, and early reports indicated that a substance

similar to IFN was induced during the course of infection of mice (52. 53). We were

able to show that mice infected with T. cruzi actually did produce IFN-alpha/beta during

the early stage of infection (54. 55). Others showed that interferon-gamma was produced

late in the course of infection (56). Mice treated with IFN-alpha/beta beginning at

the day of infection showed a transient decrease in parasitemia, compared to controls

(55). Reed and associates later showed that treatment of mice with massive does of

IFN-gamma resulted in improved survival after infection with T. cruzi (57).

During in vitro experiments, when macrophage or heart cell cultures were treated

with IFN-beta, there was no effect on the uptake of T. cruzi (58). However. when the

parasites were treated directly with IFN-beta, decreased uptake of the trypanosomes

by cells was observed (58). Therefore. IFN-beta may be able to interact directly with

the parasite, resulting in decreased uptake of the parasite. When IFN-gamma was applied

to cultures of macrophages, increased uptake and oxidative killing was observed (59).

Therefore. a two-step role for IFNs could be envisioned in resistance to Chagas' disease.

First IFN-beta could protect by limiting the uptake of the parasite by cells. Then. IFN

-gamma could enhance the destruction of the parasite in cells that had been invaded.

Additional studies were carried out with T.b. rhodesiense, one causative agent of

African sleeping sickness. Many different groups have shown that IFNs are produced

in the course of African trypanosome infections (60, 61). In our laboratory, we were

able to show that IFN production correlated with resistance of inbred strains of mice

to trypanosme infection (62). Mouse strains that were genetically susceptible to infection

produced no IFN0 intermediately resistant strains produced only IFN-alpha/beta, and

resistant strains of mouse produced both IFN-alpha/beta and IFN-gamma during the

course of infection with T.b. rhodesiense (62).



We have not been able to conclusivelydemonstratethat the IFN produced during
infection contributes to resistance to T.b. rhodesiense. Treatment of mice with IFNs,

IFN-inducers. or anti-IFNs has not altered the course of infection with T.b. rhodesiense

(63). The course of infection is so complex that it may require several different protocols

and concentrations of IFNs to show direct protective effects on the primary infection.

However. we have shown effects on secondary infections. Mice infected with African

trypanosomes are immunosuppressed, and often succumb to secondary infections (64).

We were able to show that mice that were infected with T.b. rhodesiense and were

producing IFNs were resistant to superinfection with the D variant of encephalomyocarditis

virus (65). This indicates that a mouse strain resistant to infection to T.b. rhodesiense

and producing IFN could have reduced morbidity and mortality as a result of not being

subject to secondary viral infections.

Additional studies were carried out with the amoeba Naecjleria fowleri (66). This

is a free-living amoeba, but in thermally polluted lakes, can infect children and cause

a primary amoebic meningoencephalitis (66). When N. fowleri were treated in vitro with

IFN- alpha/ beta. they were no longer infectious for mice (66).

We have also carried out studies with bacteria. We have been able to show that

IFN-alpha/beta activated mouse macrophages to ingest Escherichia coil and increase

levels of phagocytic enzymes, but IFN-gamma was not as effective in this model (67.

68). In this case. IFN-alpha/beta might be more effective than IFN-gamma.

In additional studies, models of surgical wound infection were used. Individuals

who survive trauma, such as an automobile accident or a gunshot wound, are immuno-

suppressed (69). If these individuals survive the initial trauma, the leading cause of

death is infection due to bacterial sepsis, and antibiotics are usually ineffective (69).

We were able to show using four models of wound infection in mice similar to what

occurs in trauma, that treatment with recombinant IFN-gamma. provided by Genentech.

resulted in inceased survival of the animals (70-73). The bacteria used included Klebsiella

pneumoniae and Escehrichia coll. which are common surgical wound contaminants. There

have been no studies in these models with IFN-alpha to date. but since IFN-alpha/

beta may activate phagocytic cells differently from IFN-gamma, there are exciting research

possibilities with IFN-alpha in this area.

The studies described above indicate that IFNs can demonstrate many

immunoregulatory activities. As a result of these activities, it appears that IFNs can

play a role in resistance to a wide variety of pathogens. IFNs may play a role in

modulating natural resistance to these infections as a result of immunoregulation and

other activities. It remains to be seen whether the use of exogenous IFNs. and IFN-

alpha in particular, can have practical clinical efficacy in reducing morbidity and mortality

of infections for which no effective chemotherapy exists and treatable infections in

hosts that are immuno-suppressed. The door is just beginning to open for experiments

of this nature to be carried out.
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AbStraeI--BELTZ L. A., SONNENFELDG. and KIERSZENaAUMF. 1989. Inhibition by Tr)'panosoma cruzi of
interferon-gamma production by mitogen-stimulated mouse spleen cells. International Journal for
Parasitology 19: 555-559. Infection by Trypanosoma cruzi is accompanied by severe immunosuppression
during the acute period. As part of our studies, to define the alterations caused by Trypanosoma cruzi in
lymphocyte function, we examined in this work the interferon-gamma (IFN-y)-producing capacity of
mitogen-stimulated mouse spleen and human peripheral blood monoauclear cells in the presence or absence
of blood forms of the parasite. Co-culture of phytohaemagglutinin- or concanavalin A-stimulated spleen
cells from normal mice with T. eruzi significantly decreased the levels of IFN-? activity found in the

supernatants at 48 or 72 h. In contrast, human peripheral blood mononuclear cells, though suppressed by T.
cruzi in their capacity to proliferate upon mitogenic stimulation, showed no significant decrease in IFN-?
production. The addition of exogenous IFN-? did not reverse the suppressive effect of T. cruzi on either

mouse or human cells. These results revealed, for the first time, the ability of T. cruzi to impair IFN-y
production by activated mouse lymphocytes. The lack of restoration by exogenous IFN-?suggested that the
reduced levels of this lymphokine were not, at least by themselves, the causative factor of reduced
lymphoproliferation.

INDEX KEY WORDS: Trypanosoma cruzi; Chagas' disease; interferon gamma; immunosuppression.

INTRODUCTION

THE acute phase of Trypanosoma cruzi infection in

mice is accompanied by several manifestations of

immunosuppression, including decreased interleukin

2 (IL2) production and reduced mitogen-induced

lymphocyte proliferation (Hayes & Kierszenbaum,

1981; HareI-Bellan, Joskowicz, Fradelizi & Eisen,

1983; Reed, Inverso & Roters, 1984; Tarleton & Kuhn,

1984). The parasite also suppresses the proliferation of
normal mouse spleen and human peripheral blood

mononuclear cells and in vitro following stimulation
with mitogens or a monocional antibody specific for

an epitope of the T cell receptor complex (Maleckar &

Kierszenbaum, 1983; Beltz & Kierszenbaum, 1987;

Beltz, Sztein & Kierszenbaum, 1988). The binding of

IL2 to its receptor on T lymphocytes triggers both

IFN-7 production (Farrar, Johnson & Farrar, 1981)

and cell division (reviewed by Smith, 1984). Since IL2

production by mouse spleen cells is decreased by T.

cruzi, it is possible that IFN-y synthesis may also be
impaired.

IFN-y plays an important role in host defence

against intracellular parasites, enhancing the in vitro

killing of Toxoplasma gondii, Leishmania donovani and

To whom all correspondence should be addressed.

T. cruzi by macrophages (Pfefferkorn & Guyre, 1983;

Murray, Rubin & Rothermel, 1983; Plata, Wietzerbin,

Garcia-Pons, Falcoff & Eisen, 1984). In vivo, IFN- 7
acts synergistically with anti-T, cruzi antibodies to

decrease parasitemia and prolong the survival of
infected mice (Plata, Garcia-Pons & Wietzerbin,

1987). This lymphokine also affects mitogen-induced

lymphocyte proliferation by either inhibiting or
enhancing T cell activity, depending on the dosage and

time of administration (Sonnenfeld, Mandel &

Merigan, 1978; Friedman & Vogel, 1983). Given the

roles of IFN-y in host defense and lympho-
proliferation, we looked into whether T. cruzican alter

production of this important lymphokine by normal
murine and human lymphocytes and, if so, whether

this alteration plays a role in the suppression of
lymphocyte proliferation.

MATERIALS AND METHODS

Parasites. Trypomastigotes of T. cruzi (Tulahuen isolate)
were purified from the blood of CrI-CDI(ICR)BR Swiss mice
(Charles River Laboratory, Portage, MI) infected
intraperitoneally 2 weeks previously with 2 x 105 blood
forms. The parasites were purified by density gradient
centrifugation over a mixture of Ficoll-Hypaque of density
1.077 (Budzko & Kierszenbaum, 1974) followed by
diethylaminoethyl-cellulose chromatography (Villalta &
Leon, 1979), washed twice by centrifugation (800 x g, 20
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min,4"C)andresuspendedinRPMI 1640 medium (Gibe,,
Grand Island, NY) containing 100 i.u. penicillin and 100 pg

streptomycin per ml plus either 2.5 or 5*/. heat-inactivated
(56"C, 20 min) fetal bovine serum (RPMI + 2.5%FBS or
RPMI + 5%FBS, respectively).

Mouse spleen cells (mSC). Spleens were removed from
ether-anesthetized inbred CBA/J mice (Jackson

Laboratories, Bar Harbor, ME). Cell suspensions were
prepared as described previously in detail (Maleckar &
Kierszenbaum, 1983); the nucleated cells were counted and
working suspensions were made in RPMi + 2.5%FBS. Cell
viability, determined by trypan-blue dye exclusion, was

always >99%.
Human peripheral blood mononuclear cells ( hPBMC ). The

hPBMC were isolated from the blood of healthy donors by

centrifugation over a mixture of Ficoll-Hypaque of density
1.077 (350 x g, 45 min, 20"C). The cells collected at the
interface were washed three times by eentrifugation (350 x g,

10 min, 4°C) with serum-free RPM1 1640 medium. The
hPBMC were then resuspended in RPMI + 2.5%FBS. Cell
viability was determined by trypan-blue exclusion and was

always > 99%.
Lymph,proliferation assay. Mouse spleen cells at 2.5 × 106

cells ml -t were incubated in 96-well plates (final culture
volume = 0.1 ml) in the presence or absence of 5 /lg
phytohaemagglutinin P ml - _(PHA; Sigma Chemical Co., St.
Louis, MO), together with or without 2.5 x 106 parasites
ml - _. In some experiments, exogenous recombinant murine
1FN-7 (specific activity 2.3 x 107 units per mg protein,
Genentech, South San Francisco, CA) was added, keeping
the final volume at 0. I ml. Each condition was tested in

triplicate. The cultures were incubated at 37"C (5*/o CO2) for
72 h and 37 kBq 3H-thymidine (Amersham, Arlington

Heights, IL) was present during the last 24 h. The hPBMC
cultures were performed similarly, except that the parasite
concentration was 5 x 106organisms ml- _.When exogenous

IFN-y was added to human cell cultures, we used partially
purified human IFN-y (Meloy Laboratories, Springfield,
VA). All cultures were performed in triplicate and were
terminated by automated harvesting using a MASH II
apparatus (M. A. Bioproducts, Walkersville, MD). The
results were expressed as counts per minute (c.pm.)
representing 3H-thymidine uptake during the last 24 h of
culture.

Measurement of IFN-y. To determine IFN-?" activity,
suspensions of mSC or hPBMC were incubated in sterile 24-
well plates (final culture volume = I ml) at 37"C (5% CO_,)
for 48 or 72 h in the presence or absence of 5/.tg PHA ml - i
with or without 2.5 x 106(for mSC) or 5 x 106(for hPBMC)
T. cruzi ml - _. The latter concentration of parasites was that
found to be the minimal level to consistently decrease the
proliferation of PHA-stimulated hPBMC. Following
passage through 0.22-pm-pore-size filters, the supernatants
were assayed for IFN-?, activity by a plaque reduction assay
using mouse L-929 cells and the Indiana strain of bovine
vesicular stomatitis virus (Sonnenfeld, Mandel & Merigan,
1977). The titer was expressed as units ml- _corresponding to

the reciprocal of the highest dilution that reduced plaques by
50*/,. In this assay, one unit was equivalent to 0.88 NIH G-
002-90451 i reference units and the lower sensitivity limit was
30 units IFN-7 ml- _. Identification of anti-viral activity as
that of IFN- 7 was provided by its lability at pH 2 and
inhibition with anti-murinc IFN-y antibodies (a gift from Dr
E. Havell, Trudeau Institute, Saranac Lake, NY). In the
experiments in which we measured IFN-7 t activity in
supernatants from hPBMC co-cultures with T. cruzi, we used

a radioimmunoassay kit (Centocor, Malvern, MY) which
utilizes two monoclonal antibodies directed at different

epitopes of human IFN-y and is designed to detect only
biologically active material. The lower limit of sensitivity of
this assay was 5 units IFN-:yml- i.

Absorption of murine IFN-y. Aliquots of a solution of
recombinant murine IFN-y (Genentech) were incubated in
24-well plates with or without 5 × 10 6 tO I x 107 T. cruzi
ml _at 37"C for 48 h. After filtration through 0.22-/tin-pore-
size filters, residual IFN-y activity was determined in the

filtrates by the biological assay described above.

RESULTS

Effects ofT. cruzi on IFN- y production in vitro
The levels of IFN-y activity in supernatants of

PHA-stimulated mSC cultures which contained T.

cruzi were significantly lower than those of control,

parasite-free cultures (Table I). A relatively small but

nevertheless significant reduction was demonstrable
48 h after the initiation of the cultures and a more

pronounced effect was seen at 72 h. At these times, the

decreases in 3H-thymidine incorporation due to the

presence of parasites (recorded in parallel cultures)

were approximately 50°/, and > 59*/0, respectively, in

the two repeat experiments (data not shown). Similar
results were obtained when another T ceil-specific

mitogen, concanavalin A (2 jug ml-I), was used in

experiments of identical design (data not shown). No

detectable IFN-_,-like activity was found in the super-

natants of T. cruzi suspensions at concentrations

which suppressed mSC responses, nor did the parasite
induce unstimulated mSC to secrete measurable levels

of IFN-_,.

TABLE I--T, ¢ruzi-INDUCED INHIBITION OF IFN-y PRODUCTION

BY PHA-sTIMULATED MOUSE SPLEEN CELLS*

Material tested IFN-y(units ml-i) measured after

48 h 72 h

mSC < 30 < 30
T. cruzi < 30 < 30

mSC + T. cruzi < 30 < 30
T. cruzi + PHA < 30 < 30

mSC + PHA 58 67
mSC + PHA + T.cruzi 317 <:30?

* The tested materials consisted of the culture supernatants
of mSC (2.5 x 106 cells ml-I) and/or 7". cruzi (2.5 x 106

organisms ml-t) in the presence or absence of 5 _g PHA
ml - _.The supernatants were collected at the indicated times
after initiation of the cultures. This set of results was obtained

with individual cultures and was representative of two

separate repeat experiments.
? This reduction in IFN-_, activity with respect to the

corresponding positive control value was statistically
significant (P < 0.05).

The noted decrease in IFN-y levels might have

resulted from either removal of the iymphokine by the
parasite or reduced production or secretion. This was

tested by incubating aliquots of a solution of
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recombinant murine IFN-?' with or without T. cruzi

for a 48-h period. The IFN- 7activities remaining after
absorption with parasites or mock absorption did not

differ significantly (P > 0.1). Thus, for example, in one
of the experiments aliquots absorbed with 5 × 106 and

1 × 107 parasites ml -I had 357 + 140 and 303 + 51

units IFN-7 ml -I, respectively whereas the mock-
absorbed control had 284 + 74 units IFN-_,mI-_. It is

noteworthy that the concentrations of parasites used

for absorption represented two and four times,

respectively, the level which reduced IFN-7

production in mitogen-stimulated mSC cultures.

.Attempts to reverse the suppressive effect of T. cruzi

with exogenous IFN- y

The lymphoproliferative capacity of mitogen-

stimulated lymphocytes from either infected mice

(Hayes & Kierszenbaum, 1981; Harel-Bellan et al.,

1983) or humans (Teixeira, Teixeira, Macedo & Prata,

1978) has been shown to be impaired. Furthermore,
co-culture of either mSC or hPBMC from normal

individuals with T. cruzi results in significant

suppression of lymphoproliferation (Maleckar &
Kierszenbaum, 1983; Beltz & Kierszenbaum, 1987).

Because IFN-7 can enhance T cell proliferation at

certain dosages and times of administration

(Sonnenfeld et al., 1978), the possibility that the

observed suppression in lymphocyte growth resulted

from the inhibition of IFN-y production by T. cruzi

was explored. To this end, IFN-7 was added to the
cultures so as to attain final concentrations ranging

from 8 to 250 units ml- _and the level of 3H-thymidine

incorporation was monitored. None of these IFN-7

concentrations afforded a significant restorative effect

(Table 2).

TABLE 2--LACK OF RESTORATION BY EXOGENOUS IFN-7 OF THE

CAPACITY OF PHA-sTIMULATED MOUSE SPLEEN CELLS TO

PROLIFERATE AFTER T. cruziolNDUCEDSUPPRE SSION*

3H-thymidine uptake

IFN- _, (in thousand c.p.m.) % Decrease

(unitsml _) mSC + PHA mSC+PHA+T, cruzi

0 15.2 4- 1.0 0.8 + 0.01" 95
8 14.6 4- 1.0 0.8 4- 0.2"1" 95

16 15.9 4- 0.8 0.7 + 0.2"i" 95
32 14.6 4- 0.4 1.0 4- OAt 93
64 14.7 4- 1.7 0.9 4- 0.5t 94

125 13.9 4- 0.5 0.9 4- 0.1"1" 94
250 4.6 4- 0.7 0.9 4- 0.0t 94

* Recombinant murine IFN-y was added at the indicated
concentrations to cultures of mSC (2.5 x 106 cells mI-E)

containing 5 ,ug pHA ml- _ in the presence or absence of T.
eruzi (2.5 x 106 organisms ml-i). Results are the means of
triplicate determinations made with 72-h cultures pulsed with
37kBq 3H-thymidine during the last 24 h. This set of results is
representative of three separate repeat experiments.

t P<0.05 (Student's 't' test) for the reduction in c.p.th.
_th respect to either control, i.e. mSC + PHA with or
without 1FN- y.
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The capacity of mSC to produce IL2 is decreased

following exposure to T. cruzi either in vivo or in vitro

(HareI-Bellan et al., 1983; Beltz & Kierszenbaum,

unpublished results). The addition of IL2 to these

supposed cultures restores their ability to secrete

immunoglobulin (Reed et al., 1984; Tarleton & Kuhn,

1984) and to proliferate following mitogen stimulation

(Beltz et al., 1988). Because IFN-7 has been

reported to increase the expression of IL2 receptors on

both T cells (Johnson & Farrar, 1983) and monocytes

(Herrman, Canistra, Levine & Griffin, 1985), and

higher levels of the IL2 receptor allow cells to

respond to lower concentrations of IL2 (Cantrell

& Smith, 1984), we tested whether IFN-y

would enhance the restorative capacity of IL2. The

presence of 16 or 125 units IFN-7 m1-1

did not overcome T. cruzi-induced suppression of

mSC lymphoproliferation whether or not added

together with a suboptimal level of IL2 (50 units

ml-'). Furthermore, IFN-:rdid not act synergistically
with 100 units IL2 m1-1 (data not shown), a con-

centration which does restore suppressed lympho-

proliferative mSC responses in our system (Beltz et al.,

1988).

TABLE3--LACK OFEFEECTOET. cruzi ON IFN-yPRODUCTIONeY
PHA-sTIMULATED hPBMC*

Material tested IFN-_,(units ml-i) measured after

48 h 72 h

hPBMC _<5 _<5
T. cruzi _<5 < 5
hPBMC + T. cruzi < 5 < 5
7".cruzi + PHA < 5 < 5

hPBMC + PHA 120 125
hPBMC + PHA + T. cruzi 96 119

* The tested materials consisted of the culture supernatants
of hPBMC 1.25 x- 106 cells ml -t) and/or 7".cruzi (5 x 10 6

organisms ml -I) in the presence or absence of 5 gg PHA
ml - _.The supernatants were collected at the indicated times
after initiation of the cultures, filtered and tested for IFN-?

activity by radioimmunoassay. This set of results was
obtained with individual cultures and was representative of

two separate repeat experiments. None of the noted
reductions in IFN-7 activity due to the presence of T. cruzi

was statistically significant.

We next examined whether T. cruzi would also

inhibit IFN-_, production or secretion by human

lymphocytes. As can be seen in Table 3, the presence of
5 x 106 T. cruzi ml -I in cultures of PHA-stimulated

hPBMC did not lead to a significant reduction in

IFN-7 levels in the supernatants. The addition of

exogenous human IFN-7 did not restore the

suppressed lymphoproliferative response of hPBMC

exposed to T. cruzi whether or not IL2 was present

(data not shown).
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DISCUSSION

These results show, for the first time, that T. cruzi

can diminish the capacity of mouse lymphocytes to

produce IFN-y upon activation by mitogenic stimuli.

Immunosuppression of T. cruzi in vitro has been

shown not to be due to nutrient consumption by the

parasite (Maleckar & Kierszenbaum, 1983; Beltz &

Kierszenbaum, 1987) and the present data showed

that the flagellate does not absorb, consume or

inactivate IFN-y. Furthermore, in our culture system

the numbers and the viability of mouse cells co-

cultured with T. cruzi are comparable at 48 and 72 h

with those of parasite-free cultures (Maleckar &
Kierszenbaum, 1983). Thus, the noted reduction in

IFN-y activity was probably the result of inhibited

production and/or secretion.

Decreased proliferation by spleen cells from

infected mice or by normal mSC incubated with T.

cruzi in vitro is paralleled by decreases in IL2 (Harel-
Bellan et aL, 1983; Beltz & Kierszenbaum,

unpublished results) and 1FN- y (Table 1) production.
In contrast, T. cruzi is unable to decrease IL2

production by hPBMC under optimal culture

conditions (Beltz et al., 1988) and, as reported herein,

also had no significant effect on IFN-y production by

hPBMC (Table 2). Thus, there would appear to exist a

notable difference in how the parasite affects mSC and

hPBMC responses to PHA. However, the present data

do not clarify whether this difference in the

suppressive activities of T. cruzi toward mSC and

hPBMC stems from the use of different populations of

lymphocytes or from an actual disparity in mouse and

human lymphocyte responses to the parasite.

Although reduced IFN-7 production/secretion is a

major consequence of T, cruzi-induced suppression of

mSC, it is not, at least by itself, the explanation for

such suppression, since exogenous IFN- 7 failed to
restore responsiveness in terms of lymphoprolifer-

ation measured by 3H-thymidine uptake.

T. cruzi suppresses proliferation ofhPBMC (Beltz &

Kierszenbaum, 1987). Insufficient levels of IFN-y or

IFN-y plus IL2 do not seem to be the cause for this

suppression since no significant drop in the level of

IFN-ywas observed in these cultures and neither IFN-

7 nor IL2, added to the cultures, separately or
together, corrected the suppression caused by the

presence of the parasite. IFN-y and IL2 are elements
of a complex regulatory network and are able to affect

each other's synthesis and utilization (Farrar et al.,

1981; Johnson & Farrar, 1983; Herrman et al., 1985),

with IFN-y production being upregulated by IL2

(Farrar et al., 1981). Since T. cruzi decreases the

production of both IL2 and I FN- ?' by activated mSC,

it is possible that the parasite's ability to inhibit
synthesis or secretion of IL2 is at least partially

responsible for the decrease in IFN-y production/
secretion. It should be noted, however, that

lymphocytes from mice infected with Trypanosoma

brucei have an impairment in the secretion of IL2 but

not IFN-y (Sileghem, Hamers & de Baetselier, 1987),

demonstrating that normal IL2 levels may not be an

absolute requirement for optimal IFN-y synthesis.

Conceivably, T. cruzi could exert independent

suppressive effects on T cells; this remains to be
studied.

Although the deficient capacity of mSC to produce
or secrete IFN-r after exposure to T. cruzi does not

appear to determine suppressed lymphocyte

proliferation, occurrence of this phenomenon in vivo

could alter the capacity of other host cells to interact

with the parasite. For example, macrophages take up

and destroy the parasite, and IFN-yhas been shown to

enhance these functions (Wirth, Kierszenbaum,

Sonnenfeld & Zlotnik, 1985). Furthermore, IFN-y

appears to increase the resistance of fibroblasts to T.

cruzi infection in vitro (Plata et aL, 1984) and,

synergistically with anti-?', cruzi antibodies, to

decrease the parasitaemia and increase the survival

time of infected mice (Plata et aL, 1987).

In closing, it should be noted that the present data

do not clarify whether reduced IFN-y production by

mSC in the presence of T. cruzi is an indirect

consequence of infection of accessory cells, e.g.

macrophages, by the parasite.
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Several studies have been carried out that demonstrate that immunological

activities of lymphocytes can be affected by spaceflight or by models that
attempt to simulate some aspects of weightlessness. Included among these are
the responses of lymphocytes to external stimuli such as mitogens and viruses.

When cultures of lymphocytes were flown in space, the ability of the
lymphocytes to respond to mitogens was inhibited. Similar results were
obtained when lymphocytes from astronauts or animals just returned from
space were placed into culture immediately upon return to earth, and when
models of hypogravity were used. Lymphocytes placed in culture during
spaceflights produced enhanced levels of interferon compared to control
cultures. When cultures of lymphocytes were prepared from cosmonauts or
rodents immediately upon return to earth, interferon production was
inhibited. These results suggest that space flight can have profound effects on

lymphocyte function, and that effects on isolated ceils may be different from
that on cells in the whole organism.

INTRODUCTION

Over the years, it has become apparent that spaceflight can have profound

effects on biological systems. Included among those systems is the immune
system of mammals (Barone and Caren, 1984; Jackson and Warner, 1986). In
most cases, suppression of immune responses has occured, but there have been
occasional reports of immune enhancement (Barone and Caren, 1984; Jackson
and Warner, 1986). Similar results have occurred when ground-based models

of weightlessness have been utilized.
The mechanism of the effects of spaceflight on immune responses remains

to be established. Weightlessness, stress, and low-level radiation could all
contribute to alterations in immune responses. Although studies on the effects

of spaceflight on immune responses have been limited, some interesting
observations have been made. In this monograph, I will review the effects of

spaceflight and modeling of weightlessness on lymphocyte function as
determined by the response of the lymphocytes to external stimuli such as

mitogens.

EFFECTS OF SPACEFLIGHT AND MODELING ON THE BLASTOGENIC RESPONSE OF
LYMPHOCYTES

Several studies have been carried out by obtaining the blood of
astronauts/cosmonauts immediately after return from spaceflight. Blood was





also obtained from astronautsand cosmonauts before flight, and in some cases,
during flight, to allow for the determination of the kinetics of changes in

immune responsiveness. In these experiments, white blood cells were
separated from the blood and placed in tissue culture. Mitogens, such as
phytohemmaglutinin or concanavalin-A were added to the cultures. Over

time, lymphocytes from normal individuals would divide and incorporate 3[H]-

thymidine, indicating a blastogenic response of the lymphocytes to the
mitogen. The blastogenic response to lymphocytes requires interaction with
another cell type, the macrophage, as well as interaction with soluble
regulatory factors known as cytokines. The blastogenic response and the
production of cytokines are indications of a normal functioning immune
system.

Several experiments were carried out to determine the effects of
spaceflight on lymphocyte blastogenesis. In most cases (Table l), the
blastogenic response of lymphocytes to mitogens was inhibited severely in
cells obtained from individuals immediately after return to earth (Fischer et
ai., 1972; Kimzey et al., 1975 and 1976; Criswell and Cobb, 1977; Lesnyak and
Tashputalov, 1981; Taylor, 1983; Taylor and Dardano, 1983; Konstantinova et al.,
1985; Taylor and Neale, 1986). The duration of the flights was from several
days to several months. Recent reports (Taylor, 1983; Taylor and Dardano, 1983;
Taylor and Neale, 1986) have also indicated decreased levels of circulating
monocytes in astronauts after spaceflight (Table 1). Since the monocyte is an
important accesory cell for the blastogenic response of lymphocytes, this

could have contributed to the suppression observed.
While the results described above indicate that blastogenesis of

lymphocytes in response to mitogens was inhibited when the cells were taken
from individuals immediately after return from space, the question still
remained whether spaceflight could affect blastogenesis of iymphocytes
actually held in tissue culture during spaceflight. This question was addressed
by a series of experiments using simulation and actual flight studies carried
out by Cogoli and his associates.

Human peripheral blood leukocytes were placed in culture in a fast-
rotating clinostat. This clinostat has constantly changing gravity vectors, and

has been used as a technique for simulating microgravity conditions (Cogoli et

al., 1980). Lymphocyte blastogenesis was inhibited greatly when the cells
were maintained in this clinostat (Table 2) (Cogoli et al., 1980).

In addition, an incubator was developed that allowed the performance of

similar experiments during spaceflight. A drastic inhibition of lymphocyte
blastogenesis was observed when human peripheral blood leukocytes were
placed in culture and challenged with mitogen during space flight (Table 2)
(Cogoli and Tschopp, 1984 and 1985; Tschopp and Cogoli, 1984). When the cells
were incubated in a I G centrifuge during spaceflight, much of the
blastogenic capacity was retained (Table 2), indicating that the microgravity
conditions of spaceflight contributed to the inhibited blastogenesis that was
observed during spaceflight (Cogoli and Tschopp, 1984 and 1985; Tschopp and
Cogoli, 1984).

EFFECTS OF SPACEFLIGHT AND MODELING ON THE PRODUCTION OF INTERFERON
AND OTHER CYTOKINES BY LYMPHOCYTE_

Several experiments were also carried out to determine the effects of

spaceflight on cytokine production by lymphocytes after mitogenic or
antigenic stimulus. Cytokines are molecules that are produced by cells that are
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important messengers for the development of immune responses. Without
them, lymphocytes and monocytes cannot communicate effectively with each
other and immune responses cannot be mounted. The cytokines that have been
utilized for space studies are the interferons, important antiviral, anti-cancer
and immunoregulatory molecules, and interleukin-3, an important
immunoregulatory molecule.

In an Hungarian-Soviet study, blood was removed from cosmonauts and

peripheral blood leukocytes were placed in culture during spaceflight (Talas
et al., 1983 and 1984). When the cells were challenged with a variety of

mitogens and other interferon inducers such as purified protein derivative of
Mycobacterium tuberculosis, Newcastle disease virus, and polyriboinosinic-

polyribocytidylic acid, interferon-alpha production was enhanced compared
to ground controls (Table 3). However, when peripheral blood leukocytes were
harvested from cosmonauts immediately upon return to earth after
spaceflight, interferon-alpha production in response to Newcastle disease
virus challenge of leukocytes was inhibited severely (Table 3) (Talas et al.,
1983 and 1984). The number of replicates in this series of experiments was
small, and extensive time course experiments to determine how interferon
production would have varied in cell cultures from the same individuals on the
ground were not carried out. Nevertheless, these experiments suggest that the
in vitro response of lymphocytes to spaceflight may differ from the effects of

spaceflight on lymphocytes of the intact host.
Inhibited interferon production after simulated weightlessness and

spaceflight of animals was also observed. In the first set of experiments, rats
and mice were maintained in an antionhostatic, hypokinetic, hypodynamic
supension system that models some aspects of weightlessness (Morey-Holton
and Wronski, 1981; Musacchia et al., 1980; Steffen et al., 1984). In this model,
the rodents are suspended with a head-down tilt and no load bearing on the
hind limbs. This results in simulation of some of the effects of microgravity.
When the mice or rats were challenged with polyriboinosinic-
polyribocytidylic acid, there was inhibited interferon-alpha/beta production
in antiorthostatically suspended rodents compared to normally housed controls
(Table 4) (Sonnenfeid et al., 1982; Rose et al., 1984). The inhibition was

transient, as a return to normal caging after suspension resulted in recovered
ability to produce interferon. Suspension in an orthostatic fashion (no-head
down tilt), which does not simulate the effects of microgravity, had no effect
on the capacity of mice to produce interferon-alpha/beta (Table 4) (Rose et
al., 1984). It must be noted that when animals are challenged systemically
with an interferon inducer such as polyriboinosinic-polyribocytidylic acid,
many cell types other than lymphocytes can be induced to produce

interferon-alpha/beta. Therefore, these experiments went beyond just
measuring the effects of suspension on lymphocyte responses to mitogenic
stimuli.

In a second series of experiments, rats were flown in Space Shuttle SL-3.
Upon return to earth, spleen cells containing lymphocytes were harvested,
placed in culture, and challenged with the mitogen concanavalin-A (Gould et
al., 1987). After the appropriate period of incubation, the cell culture
supernatant fluids were harvested and assayed for production of two
cytokines, interferon-gamma and interleukin-3. Interleukin-3 is another
important messenger produced by lymphocytes after mitogenic challenge,
providing immunologically significant signals to cells (Gould et al., 1987).

Cells from rats that had been flown for one week showed very significant
inhibition of the production of interferon-gamma, but no effect on
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interleukin-3 production (Table 5) (Gould et al., 1987). The results with the
interferon-gamma supported previous findings in human flight and rodent
suspension studies indicating that interferon-alpha/beta was inhibited.
However, the lack of effect of spaceflight on interleukin-3 production
indicates that all responsesof lymphocytesto mitogens are not affected in the
same fashion by spaceflight.

CONCLUSIONS

The studies described above indicate that spaceflight and models that
simulate microgravity can have profound effects on the responseof
lymphocytesto mitogens. The effects of spaceflight appear to be selective, in
that all responsesof lymphocytesto mitogensare not affected in a similar
fashion. In addition, the effects of spaceflight on isolated lymphocytes in
culture may differ from effects when lymphocytes are jn yiv9 in a whole

animal surrounded by other cells, soluble messengers and interact with
systems other than the immune system.

The mechanism of the effects of spaceflight on immune responses remains
to be established. Several possiblities exist. Among them are: 1) direct effects
of microgravity on lymphocytes, 2) inability of lymphocytes to interact
directly with other cell types such as monocytes/macrophages, 3) inability of
lymphocytes to produce cytokines, 4) inability of iymphocytes to respond to

signals from cytokines, 5) inability of antigenic or mitogenic signals to reach
lymphocytes because of fluid-shifts induced during spaceflight, and 6)
impaired function of lymphocytes because of faulty interaction with other
non-immunological systems such as the neuroendocrine system. Other
potential mechanisms surely exist. The study of these mechanisms should

progress with time.
Determination of the effects of spaceflight on lymphocytes should yield

other fascinating information. Since the immune system is responsible for
resistance to infection, the study of lymphocytes should help to determine if

long-term exposure to spaceflight conditions could compromise resistance.
The ability to produce large amounts of cytokines as a result of genetic
engineering probably indicates that enhanced production of cytokines as a
result of spaceflight will not be an effective technique for mass production of
eytokines. However, studying the response of lymphocytes to spaceflight may

aid in our understanding of how the immune response is regulated and may
allow the discovery of new cytokines whose actions are masked in normal
ground conditions.

p
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TABLE 1

EFFECTS OF SPACEFLIGHT ON THE ABILITY OF SUBJECTS' CELLS TO RESPOND TO
MITOGENS UI:_N RETURN TO EARTH

Effect on Blastogenesis l_ff¢ct on Monocyte

N o n e Not Tested

Inhibited Not Tested

Inhibited Decreased

Number Reference

Fischer, 1972

Kimzey, 1975-6

Criswell, 1977

Lesnyak, 1981

Konstantinova
1985

Taylor, 1983,
1983, and 1986
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TABLE 2

EFFECTS OF SPACEFLIGHT ON IN VITRO BLASTOGENESIS

Effect of Centrifugation

Restored

Effect on Blastogenesis

Inhibited

References

Cogoli, 1984
and 1985

Tschopp, 1984

HYPOGRAVITY DUE TO

CLINOSTAT ON THE GROUND

Inhibited Cogoli, 1980

TABLE 3

EFFECT OF SPACEFLIGHT ON HUMAN INTERFERON PRODUCTION

Situation

Leukocytes in
Culture in Space

Leukocytes
Harvested after

Return from Space

Effect on lnlerferon-Alpha

Enhanced

Inhibited

Reference

Talas, 1983 and 1984

Talas, 1983 and 1984

84



!
_7

I

TABLE 4

EFFEL-_I'S OF ANTIORTHOSTATIC SUSPENSION ON INTERFERON PRODUCTION

Treatment Effect

Rat - 2 week

Mouse- 1 week

Mouse- 1 week

+ 1 week normal cage

Mouse- 1 week

orthostatic suspension

on l.nlerferon-A! pha/Bcta R efe re n c e

I n h i b i t e d Sonnen feld,

Inhibited Rose, 1984

Recovered Rose, 1984

None Rose, 1984

1982

TABLE 5

Duration

1 week

1 week

EFFECT OF SPACEFLIGHT ON RAT CYTOKINE PRODUCTION

of Flight Cytokine Effect Reference

Interferon-gamma Inhibited Gould, 1987

lnterleukin-3 Normal Gould, 1987
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Summary - The mitogenic response of human lymphocytes was found to be markedly reduced in weightlessness conditions as compared

to normal gravity. One possible explanation is that due to the non-existent sedimentation in space the lymphocytes could not adhere

and spread on a substratum. Thus, we investigated the effect of substratum adhesiveness on lymphocyte responsiveness by reducing

and blocking cell adhesion with poly-HEMA in a simple on-ground system. Lymphocyte adhesiveness was assessed by measuring

the proportion of non-adhesive, slightly, and strongly adhesive 5tCr-radiolabelled cells on uncoated and poly-HEMA coated plastic.

The amount of cell spreading on surfaces with varying adhesiveness was determined by measuring the area of cells. Cells grown on

medium and thick poly-HEMA films were rounded in shape. By contrast, on tissue culture plastic, they showed clear signs of spread-

ing. The mitogenic response of lymphocytes grown on thick poly-HEMA films was reduced by up to 68°70 of the control (tissue cul-

ture plastic). Interferon-y production was virtually nil when the cells were grown on the least adhesive substratum. These results show

that activated lymphocytes need to anchor and spread prior to achieving an optimal proliferation response. We conclude that decreased

lymphocyte adhesion could contribute to the depressed in vitro lymphocyte responsiveness found in the microgravity conditions of

space flight.

lymphocyte I activation / adhesion / poly-HEMA / space flight / microgravity

Introduction

The in vitro responsiveness of human lymphocytes to mito-
genic lectins is remarkably reduced in weightlessness
(microgravity). On 2 Shuttle missions we have unequivo-
cally demonstrated that the mitogenic response to con A
was severely reduced by 90-97% under microgravity con-
ditions compared with a 1 g control [2, 8, 9]. These ob-
served in vitro effects in space have been explained as being
due to reduced cell-cell contacts [20], and other, still
unidentified factors [9]. However, an analysis of the cell
aggregates using electron microscopy in flight and ground
samples suggested that the cell-cell interactions were not
affected by microgravity conditions [8, 9].

The proliferation of most cells is dependent upon at-
tachment to a substratum. Folkman and Moscona [11]
studied the role of cell shape in determining growth charac-
teristics of attachment-dependent mammalian cells. They
decreased the adhesiveness of tissue culture plastic by ap-
plying increasing concentrations of poly-HEMA to control
the extent of cell spreading. Cells grown on the least adhe-
sive substrata were rounded in shape whereas those grown
on more adhesive substrata were flatter. Cell growth,
measured by DNA synthesis, was highly correlated with
cell shape. The flattened cells had significantly higher

Abbreviations: con A, concanavalin A; HBSS, Hank's balanced salt so-

lution; P, probability of error; PHI, PH2, and PH4, 10-, 100-, and
10000-fold dilution of poly-HEMA stock solution; poly-HEMA, poly

(2-hydroxyethyl methacrylate)

growth rates than the rounded ones. Thus, cell adhesion
and spreading are essential for optimal growth of mam-
malian attachment-dependent cells (bovine aortic en-
dothelial cells, WI-38 cells, A-31 cells, and Swiss 3T3 cells).

Research in the field of lymphocyte contacts has focused
upon lymphocyte-cell interactions. In vitro studies have
shown the significance of cell-cell contacts for optimal an-
tigenic or mitogenic stimulation of lymphocytes [16, 21].
At least two types of such interactions have been identi-
fied. Firstly, recirculating lymphocytes leave the blood by
adhering to and migrating between endothelial cells in
specific organs [14], in particular lymphoid sites, which
have been termed lymphocyte homing [12]. The specific
cell surface structures iymphocytes use for this process
have been called homing receptors [12]. On lymphocytes,
two groups of heterodimer receptors were found that are
similar to extracellular matrix receptors from mammalian
cells [4, 22]. One group includes the lymphocyte function-
associated antigen LFA-1, Mac-l, and the p150,95
complex; the other group comprise the "very late anti-
gens" (VLA-1 to VLA-5). Secondly, the CD3-T cell recep-
tor complex of helper T cells recognize fragments of
foreign antigens in association with class II MHC proteins
on the surface of accessory cells [6, 25]. Thus, interactions
between adhesion proteins and receptors involved in
lymphocyte-cell contacts are assumed to play a vital role
in the early events of an immune response.

Regarding lymphocyte-substratum interactions, the
present body of knowledge is more limited. Sundqvist and
Wanger [23], and Wanger and Sundqvist [26] reported that
human lymphocytes attach and spread on glass and plas-
tic surfaces. Moreover, the mitogenic response of lympho-
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cytes was lower on bacterial plastic compared with tissue
culture plastic [23]. This finding suggests that lymphocyte
adhesion and spreading are related in order to achieve an
optimal proliferation response. However, nothing is
known as to how a complete blocking of lymphocyte adhe-
sion, attachment and spreading affect the proliferation
response. This is important to know in order to analyze
earlier space flight experiments and to devise future in vitro
lymphocyte studies in space. Recent in vitro experiments
performed in weightlessness [2, 8, 91 indicate that lack of
sedimentation and convection could markedly modify the
mitogenic response of lymphocytes by reducing cell-
substratum contacts. Thus, the depressed lymphocyte
responsiveness observed in vitro under microgravity con-
ditions could result from changes in the lymphocyte sur-
face milieu and cell shape. This underscores the need to
continue to clarify the effect of lymphocyte-substratum
adhesion on responsiveness. We reduced the adhesiveness
of tissue culture plastic by applying increasing concentra-
tions of poly-HEMA. We have measured amounts of lym-
phocyte adhesion, and correlated these to changes in cell
area as a means to estimate spreading, responsiveness, and
interferon-y production. This allows us to, in part, explain
the results of lymphocyte in vitro experiments performed
during space flight.

Materials and methods

Preparation of human peripheral lymphocytes

Lymphocytes were obtained from healthy donors by Ficoll-
Hypaque gradient centrifugation [3, 191. After determining the
viable cell number (trypan blue exclusion) the cells were
resuspended in 2-20 ml RPMI-1640 (Gibco, Paisley, Scotland,
cat no 042/0251 IH) medium supplemented with 40 mM Hepes
(Sigma, St Louis, USA, cat no H 3375), 5 mM NaHCO3,
50 mg 1-l gentamicin (Biochrom KG, Berlin, Germany, cat no
A 2712), 20% pooled type 0 human serum, and 4 mM glutamine
(Biochrom KG, Berlin, Germany, cat no K 0282).

Lymphocyte proliferation assay

The procedure has been described earlier [2, 8]. Briefly, 106lym-
phocytes in 1 ml (in triplicate) were stimulated in multidishes
(Nunc, Roskilde, Denmark, cat no 1-43982) by the addition of
25 /_g ml -J con A (Pharmacia, Uppsala, Sweden, cat
no 17-0450-01). After incubation for 72 h the rate of DNA syn-
thesis was determined by the incorporation of 3H-labelled
thymidine (Amersham, Buckinghamshire, UK, TRK. 418). For
this, the lymphocytes were resuspended and transferred from the
wells into 5 ml tubes. 20/A labelled thymidine (2/_Ci) was added
to 1 ml lymphocyte culture which was incubated for 2 h at 37°C.
The labelling was stopped by the addition of 3 ml ice cold saline
(9 g/l). Following rapid filtration over Whatman GF/C filters
and 2 rinses of the tubes with 3 ml saline, the DNA was precipi-
tated on the filters with 2 washes with 3 ml ice-cold trichloroa-
cetic acid (5%) and 2 washes with 3 ml ice-cold ethanol.
Radioactivity retained by the dried filters was counted in a scin-
tillation spectrometer (Beckman Scientific Instruments, Irvine,
USA, model LS 1800).

5tCr labelling

Lymphocytes were labelled with S_Cr by incubation of ceils at
12.5 × 106cells ml- _with 250/_Ci ml- _Na25_CrO4 (Amersham,
Buckinghamshire, UK, cat no CJS.4) for 90 min at 37°C in medi-
um without supplements [10, 27]. After washing the cells 2-times
with medium the supplements were added and the cell density
was adjusted.

Poly-HEMA coating of multidishes

Slideflasks (Nunc, Roskiide, Denmark, cat no 1709210) and mul-
tidishes were coated with dilutions of poly-HEMA (Aldrich
Chemical Company, Milwaukee, USA, cat no 19206)according
to Folkman and Moscona [11]. 6 g poly-HEMA was dissolved
in 50 ml 95°/0 ethanol and the mixture was slowly stirred over-
night at 37°C. The viscous solution was then centrifuged at
2 500 rpm for 30 min to remove possible particles. This stock
solution was diluted 10-, 100-, and 10000-fold with ethanol
(termed PH l, PH2, and PH4, respectively). 200 td or 947 IA dilut-
ed poly-HEMA was filled in triplicates into the wells of the mul-
tidishes (1.9 cm 2) and slideflasks (9 cm2), respectively. The culture
vessels were dried (lids open) at room temperature for 48 h in
a sterile workbench free of vibrations.

Lymphocyte adhesion assay

106S_Cr-labelled cells in 1 ml of medium were activated adding
con A (25/_g/I) and placed into the wells of multidishes (in tripli-
cate). The cultures were incubated for 4 h at 37°C. First, 50 #1
of the supernatant without cells were sampled to check the via-
bility of the lymphocytes [27]. This cell viability test relies on
the fact that chromate is taken up by living cells and reduced
by the metabolism. The reduced form remains trapped within
the ceils, unless the cell membrane becomes leaky or the cell lyses.
Thus, radioactivity detected in a cell culture supernatant of 5JCr-
tagged cells is a means to check cell viability [27]. The rest of
the supernatant and nonadhering cells were then aspirated (dishes
tipped at an angle of 30°) using a pipette (samples 1), and replaced
by pre-warmed HBSS. After shaking the dishes on a gyratory
shaker for 15 s (220 rpm, 4 mm amplitude) to suspend loosely
bound cells, the supernatant was removed again (sample 2). Last-
ly, adhering lymphocytes were lysed with NaOH (950/A, 2 M)
(sample 3). Radioactivity in the samples were determined in a
y-counter. The proportion of cells in the 3 samples was calculat-
ed by relating the radioactivity recovered in the 3 fraction to the
original radioactivity in the total cell suspension (100°70).

Lymphocyte spreading

Immediately after the addition of con A the cell suspension (4 ml
containing 4 × 106 cells) was loaded into slideflasks and in-
cubated for 18 h at 37°C. The cells were fixed by the addition
of 800 tzl glutaraldehyde (10°70) for 20 rain. After removing the
liquid by aspiration, the bottom of the slideflasks, where the cells
had bound, was separated and used as a microscopy slide. The
fixed cells were allowed to dry at a room temperature, stained
with Giemsa, mounted in a light microscope (1 250-fold magnifi-
cation), and photographed. The cell area of 80-100 lymphocytes
from 4 different sites was determined on a graphic tablet (Sum-
magraphics) connected to a Macintosh computer (Software : Mac-
Draft and StatView) by following the lymphocyte contours.

Cytotoxicity and mitogenicity of poly-HEMA

Cytotoxic and mitogenic effects of poly-HEMA per se on hu-
man lymphocytes was tested as follows: 5_CrO:labelled lym-
phocytes were incubated in poly-HEMA coated multidishes
(PHI, 2, and 4) and radioactivity in the supernatant to check
for cell viability was assessed after 4 and 72 h [27]. To inves-
tigate whether poly-HEMA is mitogenic for human lymphocytes,
the lymphocyte responsiveness was measured in poly-HEMA
coated dishes (PHI, 2, and 4) and compared with the mitogenic
responsiveness in uncoated dishes without the addition of con A.

Determination of interferon-)" concentrations

Inter feron-_-is a T-lymphocyte specific lymphokine released into

the culture medium following antigen or mitogen stimulation.

Following an incubation of 72 h at 37°C, culture supernatants

were frozen and stored at - 20°C until ready for analysis.
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Interferon- 7 was determined in the supernatants by a radioim-
munoassay method (Centecor, Inc, Malvern, PA, USA).

Statistical analysis

Nonparametric test techniques for non-matched samples were

applied. The Kolmogorov-Smirnov test (2-tailed) checks for

differences in the median and homogeneity of all sort, whereas

the Wilcoxon-Mann-Whitney U-test (2-tailed) is more powerful

in detecting differences in the medians. P levels -->0.05 were ac-

cepted as significant.

Results

We first tested whether poly-HEMA is cytotoxic or mito-
genic for human iymphocytes. The 5_Cr-radioactivity
recovered from lymphocyte culture supernatants of cells
grown on poly-HEMA never exceeded the values of un-
coated controls (5 experiments, results not shown). Since
51Cr is retained by viable cells, but not by leaky or lysed
cells, this finding means that poly-HEMA coated culture
surfaces are not cytotoxic for human lymphocytes. To de-
tect a possible mitogenic effect of poly-HEMA, the incor-
poration of acid-precipitable radiolabelled thymidine
following a 72 h incubation of unstimulated cells placed
on uncoated plastic and poly-HEMA coated surfaces was
measured. No significant differences was found between
the two sets of experiments (5 experiments, results not
shown). Therefore, the dose of poly-HEMA used in our
experiments is neither mitogenic nor toxic to human lym-
phocytes.

The effect of increasing the thickness of the poly-HEMA
film on adhesiveness of con A activated lymphocytes is
illustrated in figure 1. The proportion of non-adhering cells
(represented by sample 1) increased with increasing thick-
ness of the poly-HEMA films. In the control, 23°70 of the
radioactivity was found in sample 1, compared to 74°7o of
the highest poly-HEMA concentration used (PHI). Radi-
oactivity in sample 2 (loosely bound cells) was highest in
the wells with the intermediate poly-HEMA dilutions
(PH2). The proportion of adhering cells (represented by
sample 3) increased with increasing adhesiveness of the
substratum. Almost no cells attached in the wells coated

with the thickest polymer film (3°7o); 22°7o and 42°7o of the
cells were recovered from the wells with the thinner coat-

ings, PH2 and PH4, respectively. In the control, 59% of
the original radioactivity was recovered in this fraction.
Clearly, an inverse relationship exists between the thick-
ness of the poly-HEMA film and lymphocyte adhesiveness.

The influence of substratum adhesiveness on the shape
of activated lymphocytes was determined by assessing the
cell area of adhering lymphocytes under a light microscope
as an index of the extent of lymphocyte spreading
(figure 2). We were unable to estimate the area of lym-
phocytes when using the thickest poly-HEMA layer as a
substratum (PH 1) since lymphocyte adherence was so poor
that too few cells would be available for statistical analy-
sis. By contrast, adhesion to the thinest film used (PH4)
did not reveal any change in cell area compared with the
control (data not shown). However, a statistically signifi-
cant difference in the area of attached lymphocytes was
detected on the medium dense polymer film (PH2). A sig-
nificantly higher proportion of activated lymphocytes was
spherical and smaller in area compared with a control af-
ter culturing for 18 h on poly-HEMA (PH2) in 5 indepen-
dent experiments (table I).
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Fig 1. Effect of substratum adhesiveness on lymphocyte adhe-
sion. 5_Cr-labelled lymphocytes were activated with con A and
seeded on uncoated plastic (control) and on three different poly-
HEMA films with decreasing adhesiveness (PH4, PH2, and PHI,
which refer to a 10'000-, 100-, and 10-fold dilution of the poly-
HEMA stock solution). Following an incubation of 4 h at 37°C,
for each type of coating, the amount of radioactivity was meas-
ured in the three cell samples as indicated below the graph. The
amount of radioactivity recovered in these 3 samples was ex-
pressed as a percentage of the total amount or radioactivity used
in the amount of cells to be seeded on a specific type of coating.
Each value is the mean (_+ sd) from 5 experiments (ie 5 differ-
ent donors). Statistical significance relative to the control was
tested using the Mann-Whitney-U-test (2-tailed; *P <_ 0.005).

Table I. Effect of substratum adhesiveness on cell area. Immedi-

ately after con A addition, lymphocytes were plated on culture

plastic or poly-HEMA coated plastic. The mean of 5 experiments

(ie 5 different donors) is displayed. The median is given in brack-

ets. Significant differences between control and assay were iden-

tified using nonparametric statistics (Kolmogorov-Smirnov-test).

Cell area (t_m2)
Exp No coating poly-HEMA Statistical
(Donor) (controO (PH2) coating analysis

1 44.1 (39.2) 36.0 (36.7) *
2 48.1 (43.1) 40.5 (39.5) **
3 43.1 (40.6) 35.8 (35.1) **
4 49.5 (43.4) 39.3 (37.0) **
5 47.8 (42.8) 39.6 (37.8) **

P _ 0.005; **P _< 0.001
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It is interesting that no large cells (> 83 #m 2) were ob-
served in the poly-HEMA coated wells. By contrast, in all
5 experiments the occurrence of large lymphocytes was not-
ed in the control wells. On average, 13°70 of the cells in
the uncoated controls exhibited an area of between 83 and

165 tzm 2. Furthermore in the uncoated wells the main peak
of areas generally showed a shift in the distribution of cell
size which included larger lymphocytes. This was never ob-
served in the poly-HEMA coated wells. Likewise, only the
lymphocytes grown in the control wells showed the typi-
cal signs of cell spreading (a broad rim of cytoplasm
around the nucleus and filopodia). These findings suggest
that the lymphocytes cultured on poly-HEMA could not
anchor and spread. In attachment-dependent cells,
proliferation is related to anchorage and spreading. We
then tested the effect of reduced anchoring and spreading

on activated lymphocytes and measured proliferation by
the uptake of radiolabelled thymidine after 72 h (fig 3).

We determined that lymphocyte proliferation is inversely
related to the thickness of the poly-HEMA film. Lympho-
cyte responsiveness was reduced by up to 68°7o of the
control at PHI (fig 3). At the lowest poly-HEMA dilu-
tion (PH4), lymphocyte responsiveness was unaffected.

When cell-substratum interactions are reduced after

con A activation, lymphocytes cannot proliferate normal-
ly. Consequently, other lymphocyte activation events as-
sociated, such as interferon-y production, should also be
affected. In 2 separate experiments the production of
interferon-T was greatly reduced after plating con A acti-
vated lymphocytes on the thickest poly-HEMA coated
plastic (table II).
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Discussion

Poly-HEMA is a hydrophobic polymer that prevents cells
from anchoring to and spreading on the coated surface.
With increasing concentration of the polymer solution ap-
plied, there is a smaller left suitable area for establishing
contact. Poly-HEMA is not cell-toxic as Folkman and
Moscona [11] and as confirmed by us. In addition, Poly-
HEMA has no mitogenic effect on human lymphocytes.
Non-toxicity and non-mitogenic of poly-HEMA are im-
portant pre-requisites for the experiments presented here.

Our results obtained in vitro show that the mitogenic
response of human peripheral blood lymphocytes is
markedly reduced when cell adhesion to the substratum
is excluded. Previous studies [23, 26] have shown that hu-
man lymphocytes attach to adequate substrata and display
signs of cell spreading. However, the effect of completely
preventing lymphocyte adhesion to a substratum on lym-
phocyte responsiveness has not been assessed before. This
is important with respect to in vitro flight experiments be-
cause under microgravity conditions, lack of sedimenta-

fig 2. Effect of substratum adhesiveness on cell shape and fre-
quency distribution of lymphocyte area. a. Lymphocytes placed
on PH2. The cells remain rounded and small, b. Lymphocytes
placed on tissue culture plastic. A considerable proportion of cells
show the typical signs of cell spreading, c. Frequency distribu-
tion of lymphocyte area. A typical analysis of an experiment is
depicted. In the uncoated control (cf fig 2b) a large portion of
spread, large cells were found. In the coated sample (cf fig 2a)
no large cells were found. These differences are significant
(table I). Bar represents 10 _.
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Table 11. Effect of substratum adhesiveness on interferon-y
production in con A activated lymphocytes. Stimulated and un-
stimulated lymphocytes were seeded on uncoated and poly-
HEMA coated plastic as indicated. Interferon-y produced by the
lymphocytes was determined in the culture supernatants follow-
ing an incubation of 72 h at 37°C.

No coating PH4 PH2 PHI
(Units/ml) (Units/ml) (Units/ml) (Units/mO

With con A Exp I 74 69 44 9
Exp 2 99 105 103 32

No con A Exp 1 2 2 0 0
Exp 2 5 2 2 1
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Fig 3. Effect of poly-HEMA coated substratum on lymphocyte
responsiveness to con A. Con A activated lymphocytes were seed-
ed on uncoated plastic (control) and plastic with increasing thick-
ness of the poly-HEMA film (PH4 to PHI). Substratum
adhesiveness decreases with increasing thickness of the poly-
HEMA layer. Following an incubation of 72 h at 37°C, lym-
phocyte proliferation was measured as the radioactivity incor-
porated into trichloroacetic acid-precipitable material. The mean
(+_ sd) of 6 experiments (ie 6 different donors) is shown. In the
control assays (no coatings) the cpm values of the incorporated
radioactivity ranged between 130 000 and 313 000 for 10 6 cells.
The incorporated radioactivity in the poly-HEMA coated dish-
es was expressed as a percentage of the corresponding control
(100%). For statistical analysis the Mann-Whitney-U-test
(2-tailed) was used (*P _< 0.01).

tion and convection could prevent cell-surface interactions
[2, 8, 9].

Our findings are similar to those reported by Folkman
and Moscona [11] using non-transformed mammalian
cells. Thus, in both non-transformed mammalian cells and
human lymphocytes, cell attachment is indispensable pri-
or to achieving optimal proliferation. Likewise, in both
studies, the magnitude of the proliferation response is
related to cell-substratum adhesiveness. The results sug-

gest that lymphocytes do not differ greatly from non-
transformed mammalian ceils with regard to attachment
and spreading. However, the present lack of data do not
allow us to conclude that with lymphocytes there is a such
close correlation between cell shape and proliferation rate
as it was found in many other non-transformed mam-
malian cells [11]. Our data are consistent with an earlier
finding that binding of lymphocytes to fibroblasts is im-
proved following stimulation [1].

The results presented here can, in part, explain data of
lymphocyte studies performed in space. In 3 independent
in vitro experiments in space we have shown that lympho-
cyte activation is depressed by 90-97% compared with 1 g
controls [2, 8, 9]. It is important to point out that nor-
mal cell-cell interactions were observed in space [8, 9]

which implies that other factors than cell-cell contacts pre-
vail in affecting lymphocyte responsiveness. However, the
depression of lymphocyte responsiveness was more
pronounced in space (90-97%) compared with even the
thickest poly-HEMA film used (68%). This indicates that
under weightlessness, cell adhesion and shape are even more
affected, or that factors other than adhesion contribute to
the reduced in vitro responsiveness. The effect of cell adhe-
sion on lymphocyte responsiveness under microgravity con-
ditions will be tested during the next Spacelab mission
(SLS-1). Cytodex microcarriers will be added to the lym-
phocyte culture to allow for adhesion in microgravity (Lee
and Cogoli, in preparation). Thus, we will determine to
what extent mitogen-induced responsiveness is restored

when lymphocytes bind to an adhesive substratum in space.
An interesting issue is the relation between the in vitro

studies addressed in this paper and the depressed lympho-
cyte responsiveness to mitogenic lectins found in ex viva
lymphocyte cultures from astronauts during and after
space flights. This finding was first reported by Soviet im-
munologists in 1973 [18], confirmed following US inves-
tigations on Skylab astronauts [17], and observed in the
majority of Space Shuttle crew members [24]. Although
such an impairment of lymphocyte function may possi-
bly lead to lowered immunity, the astronauts and cos-
monauts have maintained good health, both during and
following their flights, with the exception of minor
problems with respiratory tract infections and viral gas-
troenteritis on the Apollo flights [15] and a case of pneu-
monia on a Soviet Soyuz-Saljut mission [5]. Cogoli and

Tschopp [7] have cautioned that one should not extrapo-
late from data obtained in in vitro experiments to the
depressed ex viva lymphocyte responsiveness in astronauts
observed after space flight. It is more likely that the mul-
tiple stressors associated with space flight contribute to the
depressed immunity observed in astronauts [13, 24]. It is
conceivable that in in vitro studies lymphocytes obtained
from relaxed donors are not primed by stress-associated
hormones [13, 24, GmiJnder et al, submitted]. Thus, the
effect of space flight on lymphocyte function warrants
more detailed investigations considering the ambitious ac-
tivities planned for long-term flights on space stations and
interplanetary travels.





38 FK Gmiinder et al

Acknowledgments

We thank B Smith for her excellent technical assistance. This

work was supported by the Board of the Swiss Federal Institute

of Technology, the European Space Agency, and NASA grant
NAG9-181.

References

1 Abraham D, Muir H, Olsen I (1988) Adhesion of T and B

lymphocytes to fibroblasts in tissue culture. Immunology 65,
385-392

2 Bechler B, Cogoli A, Mesland M (1986) Lymphozyten sind
schwerkraftempfindlich. Naturwissenschaften 73,400-403

3 BC_yum A (1976) Isolation of lymphocytes, granulocytes and

macrophages. Scand J Immunol 5, $9-S15
4 Buck CA, Horwitz AF (1987) Cell surface receptors for ex-

tracellular matrix molecules. Ann Rev Cell Biol 3, 179-205

5 Canby TY (1986) Are the Soviets ahead in space ?Natl Ge-

ographic 170, 420-459
6 Clevers H, Alarcon B, Wileman T, Terhorst C (1988) The

T-cell receptor/CD3 complex : a dynamic protein ensemble.
Ann Rev Immunol 6, 629-662

7 Cogoli A, Tschopp A (1985) Lymphocyte reactivity during

spaceflight, lmmunol Today 6, 1-4
8 Cogoli A, Tschopp A, Fuchs-Bislin P (1984) Cell sensitivity

to gravity. Science 225, 228-230

9 Cogoli A, Bechler B, Miiller O, Hunzinger E (1987) Effect
of microgravity on lymphocyte activation. In : Biorack on

Spacelab DI (Longdon N, David V, eds) ESA SP-1091, ESA
Publications Division, ESTEC - Noordwijk, 89-100

10 Dustin ML, Springer TA (1988) Lymphocyte function-

associated antigen-1 (LFA-1) interaction with intercellular
adhesion molecule-I (ICAM-I) is one of a least three

mechanisms for lymphocyte adhesion to cultured endothelial
cells. J Cell Biol 107, 321-33

11 Folkman J, Moscona A (1978) Role of cell shape in growth
control. Nature 273, 345-349

12 Gallatin M, St John TP, Siegelman M, Reichert R, Butch-

er EC, Weissmann IL (1986) Lymphocyte homing receptors.
Cell 44, 673-680

13 Gmi.inder FK, Lorenzi G, Bechler B, Joller P, Miiller J, Zie-
gler WH, Cogoli A (1988) Effect of long-term physical ex-

ercise on lymphocyte reactivity: Similarity to space flight
reactions. Aviat Space Environ Med 59, 146-151

14 Harlan JM (1985) Leukocyte-endothelial interactions. Blood

65, 513-525
15 Hawkins WR, Zieglschmid JF (1975) Clinical aspects of crew

health. In: Biomedical Results of Apollo (Johnston RS, Diet-
lein LF, Berry CA, eds) NASA SP-368, Washington DC,
43-81

16 Hersh EM, Harris JE (1968) Macrophage-lymphocyte inter-
action in the antigen-induced blastogenic response of human

peripheral blood leukocytes. J hmnunol 100, 1184-1194

17 Kimzey SL (1977) Hematology and immunology studies. In:
Biomedical results from Skylab (Johnston RS, Dietlein LF,

eds) NASA SP-377, Washington DC, 249-282
18 Konstantinova IV, Antopova YN, Legenkov VI, Zazhirey

VD (1983) Study of reactivity of blood lymphoid cells in crew

members of the Soyuz-6, Soyuz-7 and Soyuz-8 spaceships
before and after flight. Space Biol Med 7, 48-55

19 Lorenzi G, Fuchs-Bislin P, Cogoli A (1986) Effects of hyper-

gravity on "whole-blood" cultures of human lymphocytes.
Aviat Space Environ Med 67, 1131 - 1135

20 Meehan R (1987) Human mononuclear cell in vitro activa-
tion in microgravity and post-space flight. Adv Exp Med Biol

225, 273-286
21 Peters JH (1972) Contact cooperation in stimulated lympho-

cytes. Exp Cell Res 74, 179-186

22 Springer TA, Dustin ML, Kishimoto TK, Marlin SD (1987)
The lymphocyte function-associated LFA-I, CD-2, and

LFA-3 molecules: Cell adhesion receptors of the immune

system. Ann Rev Immunol 5, 223-252
23 Sundqvist KG, Wanger L (1980) Anchorage and lympho-

cyte function. Contact-induced augmentation of T-cell ac-

tivation. Immunology 41, 883-890

24 Taylor GR, Neale LS, Dardano JR (1986) Immunological
analyses of US space shuttle crewmembers. A viat Space En-

viron Med 57, 213-217
25 Unanue ER, Allen PM (1987) The basis for the im-

munoregulatory role of macrophages and other accessory
cells. Science 236, 551-557

26 Wanger L, Sundqvist KG (1980) Contact-induced modifi-

cation of lymphocyte morphology. Biochem Soc Symp 45,
65-73

27 Zawydiwski R, Duncan GR (1978) Spontaneous_Cr release

by isolated rat hepatocytes: An indicator of membrane
damage. In vitro 14, 707-714





235
/"
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Abstract

We investigated the effect of substratum adhesiveness on lym-
phocyte responsiveness by reducing and blocking cell adhesion
with poly-HEMA (poly (2-hydroxyethyl methacrylate)) In a
simple on-ground system. Cells grown on medium-thlck and

thick poly-HEMA f_ns were rounded in shape and displayed
no signs of spreading. By contrast, on tissue culture plastic and
very thin POly-HEMA films, they showed clear signs of
spreading. The mitogenic response of lymphocytes grown on
thick poly-HEMA films was reduced by up to 68% of the con-
trol (tissue culture plastic). Interferon-_ production was virtu-
aUy nil when the ceils were grown on the least adhesive sub-
stratum. These results show that activated lymphocytes need to
anchor and spread prior to achieving an optimal proliferation
response. We conclude that decreased lymphocyte adhesion

• could contribute to the depressed in v/fro lymphocyte respon-
siveness found in the microgravity conditions of space flight.

Key Words: lymphocyte, adhesion, con A, poly-HEMA,

activation, spaceflight,/anmunity

by applying increasing concentrations of poly-HEMA

(poly(2-hydroxyethyl methacrylate)) to control the extent
of cell spreading. Cells grown on the least adhesive sub-

strata were rounded in shape whereas those grown on
more adhesive substrata were more flattened (Fig. I).

No poly-HEMA:

full spreading

Thin poly-FIEMA Thick poly-HEMA

film: reduced film: no spreading

spreading

Fig. I. Effect of increasing thickness of a poly-HEMA films on cell
shape of attachment-dependent mammalian cells. With increasing
thickness, cells are more rounded in s_7_ and grm_lh raCe decreases.

Report

The in vitro responsiveness of human lymphocytes to

mitogenic lectins is remarkably reduced after spaceflight.

This finding was first reported by Soviet immunologists in

1973 (1), confirmed following U.S. investigations on

Skylab astronauts (2), and obstrved on the majority of
Space Shuttle crewmembers (3). Although such an im-

pairment of lymphocyte function may possibly lead to

lowered immunity, the astronauts and cosmonauts have
maintained good health both during and following their

flights, with the exception of minor respiratory and gas-
trointestinal problems on Apollo flights (4) and one re-
ported pneumonia on a Soyuz-Saljut mission (5).

On 2 Shuttle missions we have unequivocally

demonstrated that microgravity affects lymphocyte re-
sponsiveness in vitro. The mitogenic response to con A

was severely reduced (6-8). These observed in vitro effects
in space have been explained as being due to reduced cell-

cell contacts, and other, still unidentified factors (7, 9).

The proliferation of most cells is dependent upon at-
tachment to a substratum. Folkman and Moscona (10)

studied the _'ole of cell shape in determining growth char-

acteristics of attachment dependent mammalian cells.

They decreased the adhesiveness of tissue culture plastic

Cell growth, measured by DNA synthesis, was

highly correlated with cell shape. The flattened cells had
significantly higher growth rates than the rounded ones.
Thus cell adhesion and spreading are essential for optimal

growth of mammalian attachment dependent cells.

In vivo, a considerable proportion of lymphocytes

remains suspended in the blood and lymph. In vitro stud-

ies have shown the significance of cell-cell contacts for op-
timal antigenic or mitogenic stimulation of lymphocytes
(11, 12). Regarding lymphocyte-substratum interactions

Sundqvist and Wanger (13) reported that the cultivation
of lymphocytes on bacterial plastic petri-dlshes resulted in
a reduction of 10-50% of lymphocyte responsiveness com-

pared with lymphocytes seeded on tissue culture plastic.

Furthermore the authors (13) found that the lymphocytes
placed on bacterial plastic did not show spreading. This

finding suggests that lymphocyte adhesion and spreading

is indispensable prior to achieving an optimal

proliferation response. Therefore, in relation to the effects

of spaceflight on the functioning of human lymphocytes

in in pitro assays, it is/nteresting to know to what extent

lymphocytes must depend upon attachment to a substra-

tum and spreading before proliferation can proceed nor-

mally following antigenic stimulation and how this re-
lates, if at all, to the in vivo situation.

Recent research in the field of lymphocyte contacts
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Las focused upon lymphocyte-cell interactions, and at

least two types have been identified as a prerequisite for
the early events of an immune response. Firstly, recirc_zlat-

ing lymphocytes leave the blood by adhering to and mi-
grating between epithelial cells in specific organs (14), in
particular lymphoid sites which has been termed lympho-

cyte homing (15). The specific cell surface structures lym-

phocytes use for this process have been called homing re-

ceptors (15). On lymphocyles, two groups of heterodimer
receptors were found that are similar to extracellular ma-

trix receptors from mammalian cells (16, 17, 18). It is as-
sumed that interactions between adhesion proteins and

receptors involved in lymphocyte-cell contacts play a vital
role in the early events of an immune response.

The in vitro experiments performed in weightless-
ness (6-8) indicate that lack of sedimentation and convec-

tion could markedly modify the mitogenic response of

lymphocytes by reducing cell-cell and/or cell-substratum

contacts (Fig. 2).

0G 1G

Stimulator Responder

cell _ cell

Stimulator _ Responder

Substratum (surface)

Fig. 2. Effect of gravity on lymphoc_e sedimentation and adhesion.
Under microgravity conditions, stimulator cells (accessory cells like

monocytes and macrophages) and lymphocytes (responders) do not
sediment (diagram on the left). It is concei_rdale that in microgravity
these cells cannot adhere, anchor and spread on the substratum. This

might affect the mitogenic responsiveness. By contrast, under norms/
gravity cells may adhere, anchor and spread on the substratum

(diagram) on the fight provided that the adhesiveness of the surface is
adequate.

Thus, the depressed lymphocyte responsiveness ob-

served in vitro under microgravity conditions could result
from changes in the lymphocyte surface milieu. It is im-

portant to realize that we observed normal cell-cell inter-

actions in lymphocyte cultures obtained after spaceflight

(7, 8). This underscores the need to continue to clarify the

effect of lymphocyte-substratum adhesion on responsive-
ness. We reduced the adhesiveness of tissue culture plas-

tic by applying increasing concentrations of POly-HEMA.

We have measured amounts of lymphocyte adhesion, and

correlated these to changes in cell area as a means to esti-

mate spreading, responsiveness, and interferon-gamma

production. These experiments are important to help to
understand earlier spaceflight results and to devise future

experiments.

The effect of increasing the thickness of the poly-
HEMA film on adhesiveness of con A activated lympho-

cytes is illustrated in Fig. 3.

The proportion of nonadhering cells (represented by

sample 1) increased with increasing thickness of the poly-
HEMA films. In the control 23% of the radioactivity was

found in sample 1, compared to 74% of the highest poly-
HEMA concentration used (PH 1). Radioactivity in sample

2 (slightly adhering cells) was highest in the wells with the
intermediate poly-HEMA dilutions (PH 2). The propor-
tion of adhering cells (represented by sample 3) increased
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Fig. 3. Control of lymphocyteadhesionby variation of subslratum
adhesiveness. Fiat bottom multidishes (Nunc) were c_ted with in-

creasing thickness of poly-HEMA films (10). Dilutions of the poly-

HEMA stock solution (6 g/i in 95% ethylalcohol) were I0 _ fPH4),

10 -2 (PH2), and 10 -I (PHI). Lymphocyles were prepared by Ficoll-

Hypaque density centri[ugation (19, 20). After labelling the lympho-

cymes with SlCr204 (2I, 22), 106 cells in I ml of medium were acti-

vated with concanavalin A (25 lag/l) and placed into the wells (in

triplicates). The cultures were incubated for 4 h at 37'_.. First, 50 ld
of the _yernatant without cells v2ere sampled to check the viability of

the lymphocytes (2I). Next, the rest of the suJx'rnatant and nonadher-

ing cells were aspirated (dishes tipped at an angle of 50") using a
pipette (sample 1), and replaced by prewarmed HBSS. After shaking

the dishes on a gyratory shaker for 15 s (220 rpm, 4 mm amplilude) to
suspend loosely bound cells, the supernatant was removed again

(sample 2). Lastly, adhering lymphocy_ were lysed with NaOH (950
Id, 2 M) (sample 3). Radioactivity in the samples were determined in

a g-counter. _ proportion of cells in the 3 samples g_s calculated by
relating the radioactivity recovered in the 3 fractions to the original

radioactivity in the total cell suspension. Each value is the mean (:t

standard deviation) from 5 independent experiments using 5 different

donors. For statistical analysis the Mann-Whitney-U-test (2-tailed)

was applied (*, P:_.005).

with increasing adhesiveness of the substratum: Almost
no cells attached in the wells coated with the thickest

polymer film (3%); 22% and 42% were recovered from the

wells with the thinner coatings, PH 2 and PH 4, respec-

tively. In the control 59% of the original radioactivity was
recovered in this fraction. Clearly, an inverse relationship
exists between the thickness of the POly-HEMA film and

lymphocyte adhesiveness.

The influence of substratum adhesiveness on the

shape of activated lymphocytes was determined by

assessing the cell area of adhering lymphocytes under a
light microscope as an index of the extent of lymphocyte

spreading (Fig. 4).

We were unable to estimate the area of lymphocytes

when using the thickest poly-HEMA layer as a substratum

(PH1) since lymphocyte adherence was so poor that too
few cells would be available for statistical analysis. By
contrast, adhesion to the thinnest film used (PH4) did not

reveal any change in cell area compared with the control
(data not shown). However, a statistically significant dif-

ference in the area of attached lymphocytes was detected
on the medium dense polymer film (PH2). A significantly

higher proportion of lymphocytes after con A addition
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Fig. 4. Effect #substratum adhesiveness on cell shape. The frequency

distribution of lymphocyte area of a typical experiment (one of of five)

is depicted. Siideflasks were coated with poly-HEMA (PH2; s. Fig. 3).
Immediately after con A activation the cell suspension (4 ml contain-

ing 4 I06 cells) was loaded into slideflas_ and incubated for 18 h at

37"C. The cells were fixed by the addition of 800 ld glutaraldehyde

(10%) for 20 rain. The fixed cells were allou_ to dry at room tem-
perature, stained with Gionsa, mounted in a light microscope (1250-

fold magnification), and photographed. The cell area of SO-lO0 lym-

phocytes [rom 4 differtnt sites was determined on a graphic tablet

(Summagraphics) connected to a Macintosh computer (Software:

MacDrafl and StatVitto) by following the lymphocyt.e contours.

was spherical and smaller in area compared with a control

after culturing for 18 hours on poly-HEMA (PH2) in 5
independent experiments.

It is interesting that no large cells (> 83 lam 2) were
observed in the poly-HEMA coated wells (Fig. 4).

By contrast in all 5 experiments the occurrence of

large lymphocytes (up to 165 lain 2) was noted in the con-
trol wells. Furthermore in the uncoated wells the main

peak of areas generally showed a shift in the distribution

of cell size which included larger lymphocytes. This was
never observed in the poly-HEMA coated wells. Likewise,
only the lymphocytes grown in the control wells showed

the typical signs of cell spreading (a broad rim of cyto-
plasm around the nucleus and filopodia). These findings

suggest that the lymphocytes cultured on poly-HEMA
could not anchor and spread. In attachment dependent
cells proliferation is related to anchorage and spreading.

We next tested the effect of reduced anchoring and
spreading on activated lymphocytes and measured prolif-

eration by the uptake of racllolabelled thymidine after 72 h
(Fig. 5).

< 120]
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_o _ 40 \\"
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20 _N,"_

0 "
Nor_ PH4 PH.2 PHI

Type of coating

Fig. 5. Effect of poly-
HEMA coaled substratum

on lymphocyte responsive-

hess. After con A stimula-

tion, lymphocytes were

seeded on untreated plastic
of multidishes (control)

and on increasing polymer
film thickness (PH4, PH2,

and PH1; s. Fig. 3) and in-

cubated for 72 h_ Then the

tale of DNA synthesis was

determined by the incorpo-

ration of 3H-labelled

thymidine (20). The mean

(at s.d.) of 6 independent

experiments (6 donors) is s_',cn. For statistical analysis the Mann-
Win'they-U-test (2-tailed) u_s used (*, P:_O.O1).
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We determined that lymphocyte proliferation is in-

versely related to the thickness of the poly-HEMA film.

Lymphocyte responsiveness was reduced by up to 68% of

the control at PH1 (Fig. 5). At the lowest poly-HEMA di-
lution (PH4), lymphocyte responsiveness was unaffected.

These results are similar to those reported by Folkman
and Moscona (10) using nontransformed mammalian
cells. Thus in both nontransformed mammalian cells and

human lymphocytes the magnitude of the proliferation
response is related to cell-substratum adhesiveness.
Furthermore, in both studies, the growth rate determined

by radiolabelled thymidine uptake appears to correlate
with cell shape.

When cell-substratum interactions are reduced after

con A activation, lymphocytes cannot proliferate nor-
mally. Consequently, other lymphocyte activation events

associated, such as interferon_ production, should also be
affected.

In 2 separate experiments the production of inter-

feron-'r was greatly reduced after plating con A activated
lymphocytes on the thickest poly-HEMA coated plastic
(results not shown).

Our results obtained in vitro suggest that human pe-
ripheral blood lymphocytes are attachment dependent
ceils which need adhesion to a substratum in order to fa-

cilitate anchoring and spreading for activation events and

proliferation to proceed normally. Therefore lymphocytes
do not differ greatly from nontransformed mammalian

cells in respect to attachment and spreading. This is con-
sistent with the complex functions of lymphocytes in vi,'_o

during the early events of the immune response. In par-
ticular, the interaction of lymphocytes with the endothe-
lium lining of blood vessels is important for adhesion and

diapedesing of lymphocytes into the lymphatic tissue
(lymphocyte homing) and into sites of inflammation (23,

24). It is not surprising that resting, nonstimulated B and T
lymphocytes both bind very poorly to fibroblasts (16, 23,

24). Only activated lymphocytes express the adhesion
proteins that allow for attachment to other cells and to ex-

tracellular matrix proteins such as laminin (23).

Our Findings that lymphocytes are adhesion depen-

dent can in part explain data of lymphocyte studies per-

formed in space. In 3 independent in vitro experiments in

space we have shown that lymphocyte activation is de-
pressed by 90-97% compared with I g controls (6-8). Note

that in this paper we used exactly the same protocol as in

these previous space experiments. However, the depres-
sion of lymphocyte responsiveness was more pronounced

in space (90-97%) compared with even the thickest poly-
HEMA film used (68%). This indicates that under

weightlessness, factors other than adhesion may con-
tribute to the reduced in vitro responsiveness. For in-

stance, on ground cells still sediment and their shape may
change although the cells cannot anchor on poly-HEM.A.

To check this hypothesis we subjected iymphocytes
seeded on tissue culture plastic to increased gravity (20g)

and normal gravity as a control. It is interesting that 1)-m-
phocyte area was increased in all cells at 20g compared
with lg (Fig. 6).

In particular, the modal of the main peak showed a

significant shift towards larger cells. In addition, a higher

proportion of large cells (> 85 la.rn2) was found at 208

compared with lg. This increase of cell size at 20g resulted

in a significant increase of lymphocyte responsiveness to
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Fig. 6. Effect of increased gravity (20&} on cell shape. One typical ex-

periment of 5 is shown. After the addition of con A, the lymphacytes
were seeded on PH2 and cultured as described in the caption of Fig. 5

at lg and 20g. The frequency distn'bution eta typical eaperiment is

con A of 40%, which is consistent with eariier results (25).

Likewise, on poIy-HEMA coated plastic (PH2) at 20g, the

modal of the main peak was significantly shifted towards

larger cell sizes in all five experiments (result not shown).
No large ceils (> 85 lain 2) were observed when the cells

were seeded on poly-HEMA both at lg and 20g. Thus it is

not surprising that the mitogerdc response in cells grown
on poly-HEMA was not changed by increased gravity.
This can be interpreted that increased gravity leads to an

increase in lymphocyte proliferation when the cells are
allowed to anchor and to spread.

The experiments presented here helped us to devise
future experiments under microgravity conditions.

During the next Spacelab mission (SLS-I) we will culture
lymphocytes with Cytodex microcarriers to allow for ad-

hesion under microgravity conditions (Lee and Cogoli,

manuscript in preparation). We will determine to what
extent mitogen-induced responsiveness is restored when

lymphocytes bind to an adhesive substratum in space.

With respect to the in vivo situation, Cogoli and Tschopp
(26) have cautioned that one should not extrapolate from
data obtained in in vitro experiments to the depressed

lymphocyte responsiveness observed after spaceflight. It

is more likely that the multiple stressors associated with
spaceflight contributes to the depressed immunity ob-

served in astronauts (3, 27, 28, 29). The effect of space

flight on lymphocyte function warrants more detailed in-
vestigations considering the ambitious activities planned

for long-term flights on space stations and interplanetary
travels.
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Effect of Microgravity Modeling on Interferon and
Responses in the Rat

Interleukin
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ABSTRACT

Rats were placed in whole-body harness suspension in three configurations: antiorthostatic hypokinetic/

hypodynamic suspension (AAH) to induce headward body fluid redistribution and unload the limbs, orthostatic

hypokinetic/hypodynamic suspension (OHH) to unload the limbs without fluid redistribution, and harness

restraint (HR) to produce the restraint stress of the model without fluid redistribution or musculoskeletal

disuse. AHH and OHH suspension transiently increased interferon-',/(IFN-y) production in response to the

mitogen conconavalin A. Harness restraint alone did not affect IFN-y response. However, both suspension

modeling and harness restraint caused a transient reduction in interleukin-I (IL-I) and IL-2 responses to
mitogen. This suggests that factors associated with musculoskeletal unloading affected IFN-y responses, while

IL-I and IL-2 responses were affected by the physiological stress of restraint.

INTRODUCTION

rARIOUS IMMUNOLOGICCHANGEShave been noted in hu-mans, animals, and cell cultures during and after space
flight._ 12)Lymphoid organ involution, _4_changes in immune
cell populations, and decreased response to colony-stimulating
factor have been seen in rats following space flightJ 8_Dimin-
ished lymphocyte blast transformation in response to mitogens
has been observed consistently in space flight crewsJ 7'L1_2_
Lymphocytes taken from humans and rats immediately after
space flight have reduced ability to produce interferons (IFNs) in
response to mitogenic challengeJ 5''_ In contrast, lymphocytes
cultured during space flights show enhanced IFN production.{l°)
The underlying mechanisms of these effects, as well as their
immunologic significance, are currently unknown.

Previous studies by investigators in our laboratory have
examined IFN and interleukin (IL) responses of rats that had

flown aboard the U.S. Space Shuttle. In these studies, lympho-
cytes harvested from rats flown in space had subnormal IFN-y
production but normal IL-3 production? 5_Ground-based sus-
pension modeling has been used in attempts to reproduce or
anticipate the immunologic effects of microgravity. Impaired
IFN-a/[3 production was seen in mice and rats in suspension
experimentsJ t3._4_Reduced IFN-a/13 production in suspended

mice has been correlated to increased susceptibility to viral
infectionJ _s_Rats and mice used in various suspension models
have also shown reduced macrophage phagocytosis? _6_de-
creased superoxide production by peritoneal macrophages, _7'
and decreased in vivo production of IFNs similar to that observed
in rats fown on the U.S. Space Shuttle. cS'H'_s_

Variations on the whole-body harness suspension model were
used to test the hypothesis that redistribution of body fluids and
musculoskeletal unloading contribute to the immunologic ef-
fects of suspension and therefore may be related to immunologic
changes during space flight. Rats were placed in whole-body
harness suspension _18,J,_configured to produce musculoskelelal
unloading and reduced limb movement (hypokinesiaJ
hypodynamia). Suspensions were conducted with rats in the
head-down position (antiorthostasis) to induce fluid shifts, or in
the level position (orthostasis). Rats were also placed in the
suspension harnesses with full weight bearing on all limbs and
without head-down tilt. This allowed examination of the contri-

bution of restraint stress to the immunologic effects of suspen-
sion. Following suspension, the in vitro immunologic responses
surveyed consisted of milogen-stimulated production of the
immunologically important cytokines IFN-y, IFN-a/[3, IL-I,
and IL-2.

_Departmentof Microbiology and Immunology, School of Medicine, University'of Louisville, Louisville, KY 4(1292:-'NASA Johnson Space
Center, Houston, TX.
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MATERIALS AND METHODS

SuspensionModeling: Male, 350-400-gram CD rats (Charles

River, Wilmington, MA) were placed in the whole-body harness

suspension modelJ ts.to_ Three different configurations of the

model were used. in the first configuration, the rats were

positioned in the harness system with 20 ° head-down tilt to

induce antiorthostasis and with their hind limbs completely

unloaded to produce hypokinesia and hypodynamia. This con-

figuration is referred to as antiorthostatic hypokinetic/

hypodynamic suspension (AHH). In the second configuration,

referred to as orthostatic hypokinetic/hypodynamic suspension

(OHH), rats of the same strain, sex, and size were placed in

suspension with their hind limbs unloaded as before but without

the head-down tilt. The third suspension configuration was used

to examine the effects of restraint in the suspension harness. Rats

were placed in suspension harnesses with no tilt and with full

loading on their limbs (harness restraint, HR). Suspensions of 1,

3, 7, or 14 days duration were carried out for each suspension

type. In each experiment, rats of the same size, sex, and strain

were maintained as controls in normal caging. Food was pro-

vided to the control rats in amounts equal to the average daily

food consumption of the suspended rats. The rats were main-

rained under National Institutes of Health (NIH/guidelines in an

AAALAC accredited facility under the supervision of a veteri-

narian.

The rats were killed by a 100 mg/kg body-weight dose of

sodium pentobarbital administered i.p. The spleen of each rat
was excised under sterile conditions and washed four times in

RPMI-1640 medium (GIBCO Laboratories, Grand Island, NY)

supplemented with 10c)[ fetal bovine serum (FBS, GIBCO) and

antibiotics. Splenocytes were harvested by teasing apart the

spleens in 5 ml of medium. The splenocytes were concentrated

by centrifugation at 200 x g for 10 rain at 4°C then suspended in

30 ml of medium. The cells were counted on a hemocytometer

and viability was assessed by trypan blue exclusion. Cell

viability was always found to be 90% or greater.

IFN-_ Production: Splenic lymphocytes from the suspended
rats I1 ml at 3 × 106 cells/roll were incubated with a final

concentration of 5 Ixg/ml concanavalin A (ConA, Sigma Chem-

ical Co., St. Louis, MO) in 24-well culture plates (Falcon 3047,

Becton Dickinson, Lincoln Park, N J). The cells were cultured

tor 48 h at 37°C and 5% CO2 .120_ Following the incubation, the.

IFN-containing supernatants were collected, centrifuged at

2(X) × g for 10 rain to remove cells, and stored at -70°C.

IFN-a/[3 Pr_Muction: Splenic lymphocyte suspensions con-

taining 3 × 10 _' cells/ml in 1 ml of RPMI-1640 were incubated

with 10 Ixg/ml polyriboinosinic/polyribocytidylic acid

[poly(l:C), Sigma] and 20 la,g/ml DEAE dextran (Pharmacia,

Piscataway, N J) in 24-well culture plates for 2 h at 37°C and 5%

CO,. Following the incubation, 1 ml of additional medium was
added to each culture and the cultures were incubated for an

additional 24 hJ2°'2_ Culture supernatants containing IFN-ot/13

were harvested by centrifugation at 200 × g to remove cells and
were stored at -70°C.

Production _'IL-I and IL-2: Splenic lymphocytes from the

suspended rats (1 ml at 3 × 10 _'celts/roll were incubated with 1

gg/ml indomethicin and 5 _g/ml ConA in 24-well culture

platesJ 22_The cells were cultured for 48 h at 37°C and 5% CO 2.

Following the incubation, the supernatants were collected,

centrifuged at 200 × g for 10 rain to remove cells, and stored

frozen at - 70°C.

IFN Assays: IFN activity in supernatants was quantified by

reduction of the cytopathic effect of Indiana strain vesicular

stomatitis virus (VSV) on mouse L929 cellsJ 23_ Serial tripling

dilutions of the sample supernatants and standards were made in

the assay medium which consisted of minimal essential medium

(MEM, GIBCO) containing 2.5% HEPES (Sigma) and 5c_

FBS, in 96-well microtiter plates (Falcon 3072). A suspension

of 1 × 10 -_cells/ml was prepared from a confluent monolayer

culture of L929 cells. Each assay well received 100 I,tl of the

L929 suspension and was then incubated for 24 h at 37°C and 5c/_

CO 2. Following the incubation, 200 plaque-forming units of

VSV in 200 _1 of assay medium was added to each well and

incubation continued for 24 h or until cytopathic effects were

observed microscopically. The plates were then drained and 50

_1 of MTT (5 mg/ml in saline) and 50 _1 of assay medium were
added to each wellJ 24) Incubation was continued for 2 h and then

100 ml of 10% SDS was added. Following overnight incubation,

the plates were scanned on a microtiter plate reader (Dynatech

MR 600, Dynatech Laboratories, Alexandria, VA) at 570 nm.

Titers were defined as the reciprocal of the supernatant dilutions

giving a 50_ increase in optical density compared to controls

receiving virus without IFN.

IL-I Assay: IL-I activity in samples was quantified by a

mouse thymocyte co-mitogenesis assay. '_2' Thymocytes were

harvested from 20- 25-gram female Swiss Webster mice

(Charles River) under sterile conditions. The mouse thymocytes

were suspended at a concentration of 2 × 10_' cells/ml in

RPMI-1640 supplemented with 5% FBS and antibiotics. Sam-

ples, standards, and controls were serially diluted two-fold in
RPMI-1640 with 5% FBS and antibiotics in 96-well microtiter

plates. ConA was added to each well at a final concentration of

2 p,g/ml. Each well then received 100 I,tl of the thymocyte cell

suspension. The cultures were incubated for 72 h at 37°C and 5%

CO 2. IL- 1 induced blast transformation of the thymocytes and

quantified colorimetrically with MTTJ 24_ Following the 72-h

incubation, 20 p,l of a 5-mg/ml MTT solution was added to each

well and allowed to incubate for 4 h as before. Each well then

received 50 ILl of 10% SDS with overnight incubation. The

optical density of each well was read on a scanning microtiter

plate reader at 570 nm Titers were defined as the reciprocal of

the dilution giving a 50% reduction in optical density compared

to the highest standard.

IL-2 Assay. Stimulation of mouse splenoblast proliferation

was used to assay IL-2 activity in samples from the suspended

rats. c'-sJ Splenocytes were sterilely harvested from 20 to 25-

gram female Swiss Webster mice. The cells were suspended in

150-ml culture flasks IFalcon) at a concentration of 2 x 105

cells/ml in RPMI-1640 containing 10% FBS, antibiotics, and 5

_g/ml ConA. The cells were incubated for 72 h at 37°C and 5%

CO 2 to allow blast transformation. Following the incubation, the

splenoblasts were washed three times, resuspended at 2 × l0 s
viable cells/ml in medium, and incubated for 24 h. Serial
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doublingdilutionsofeachsample,standards,andcontrolswere
madeinmediumin96-wellmicrotiterplates.Splenoblastswere
addedtoeachwell(50txlataconcentrationof2× 106cells/ml)
andincubatedfor20h.Followingthisincubation,20ILlof5
mg/mlMTTwasaddedtoeachwellandincubatedfor4h. 124_

The plates were scanned at 570 nm on a microtiter plate reader

following overnight solubilization of the reaction products with

100 i,zl of 10% SDS. Titers were defined as the reciprocal of the

dilution giving a 50% reduction in optical density.

Statistical Analysis: Student's t-test was used to establish the

statistical significance of differences between results for exper-

imental and control samples. Alpha was set a priori at p_<O.05.
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RESULTS

Body weight

Rats placed in suspension or harness restraint lost consider-

able body weight as did their pair-fed controls. The weight loss

in suspended and restrained groups was nearly identical. Sus-

pended rats initially lost weight at a faster rate than their pair-fed

controls. However, by 14 days of suspension, total weight loss

was the same in the controls and suspended animals.

1FN-edf3 production

Lymphocytes from AHH suspended rats tended to produce

less IFN-a/[?, activity than those from controls through day 7 of

suspension; however, the numerical differences did not reach

statistical significance. Cells from rats in the OHH configuration

produced similar results with a significant depression of IFN-

a/13 production occurring at day 3 (Fig. 1). IFN-cdl3 production

in HR suspended rats was similar to that of the AHH rats, with

the exception that a significant depression of interferon produc-

tion occurred at 7 days.

IFN-'y production

IFN-_ production by the lymphocytes of suspended rats was

significantly increased at day 3 by both the AHH and OHH

suspensions (Fig. 2). Afterwards, IFN titers were equivalent to

controls in the AHH animals but were significantly enhanced at

day 14 in the OHH rats.

IL-1 production

Lymphocytes from rats experiencing both head-down tilt and

musculoskeletal unloading in the AHH suspension configura-

tion produced significantly less IL-I compared to controls

following 1 or 3 days of suspension (Fig. 3). Production of IL-1

was normal at 7 or 14 days of suspension• Rats experiencing

musculoskeletal unloading without head-down tilt (OHH)

showed a similar trend in IL-1 production: however, the depres-

sion of IL-1 production was significant only on day 3• Harness

restraint suppressed IL-1 production at days I and 7.

IL-2 production

All three of the suspension configurations transiently de-

pressed IL-2 production by lymphocytes from suspended rats
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FIG. 1. Effects of suspension modeling on rat IFN-a/[?,

production. Rats were placed in one of three harness suspension

configurations to simulate the unloading and fluid redistribution

of microgravity. Following suspension, splenocytes from sus-

pended and control rats were stimulated with poly(I:C) and their

IFN-a/[3 response was measured. A. Results for rats in AHH
(hind limbs unloaded, 20 ° head down tilt). B. Results for rats in

OHH (hind limbs unloaded, no tilt). C. Results for rats in HR

(harness restraint). Each bar represents the mean titer -+ SE of

two separate experiments with 5 rats/experiment. *p <_ 0.05.

(Fig, 4), IL-2 production appeared to be depressed at 1 and 3

days of suspension regardless of the suspension type, with

statistically significant depression occurring at 3 days of suspen-

sion in the AHH and OHH rats, and at 1 and 3 days in the HR

rats,
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DAYS IN SUSPENSION

FIG. 2. Effects of suspension modeling on rat 1FN-'y produc-
tion. Rats were placed in one of three harness suspension
configurations to simulate the unloading and fluid redistribution
of microgravity. Following suspension, splenocytes from sus-
pended and control rats were stimulated with ConA and their
IFN-7 response was measured. A. Results for rats in AHH (hind
limbs unloaded, 20 ° head down tilt). B. Results for rats in OHH
(hind limbs unloaded, no tilt). C. Results for rats in HR (harness
restraint). Each bar represents the mean titer -+ SE of two
separate experiments with 5 rats/experiment. *p _<0.05.
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DAYS IN SUSPENSION

FIG. 3. Effects of suspension modeling on rat IL-I produc-
tion, Rats were placed in one of three harness suspension
configurations to simulate the unloading and fluid redistribution
of microgravity. Following suspension, splenocytes from sus-
pended and control rats were stimulated with ConA and their
IL-1 response was measured. A. Results for rats in AHH (hind
limbs unloaded, 20°hcad down tilt). B. Results for rats in OHH
(hind limbs unloaded, no tilt). C, Results for rats in HR (harness
restraint). Each bar represents the mean titer -+ SE of two
separate experiments with 5 rats/experiment. *p <_ 0.05.
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FIG. 4. Effects of suspension modeling on rat IL-2 produc-
tion. Rats were placed in one of three harness suspension
configurations to simulate the unloading and fluid redistribution
of microgravity. Following suspension, splenocytes from sus-
pended and control rats were stimulated with ConA and their
IL-2 response was measured. A. Results for rats in AHH (hind
limbs unloaded, 20° head down tilt). B. Results for rats in OHH
(hind limbs unloaded, no tilt). C. Results for rats in HR (harness
restraint). Each bar represents the mean titer --- SE of two
separate experiments with 5 rats/experiment. *p _< 0.05.

DISCUSSION

Microgravity or "weightlessness" in space flight is character-
ized by the absence or reduction of various biologically relevant
forces. Mechanical loading, hydrostatic pressure, thermal buoy-
ancy, and sedimentation are absent or greatly reduced in micro-

gravity. The absence of these forces may directly affect cellular
activity or indirect effects .may result as a consequence of
physiologic responses to microgravity.

Reduced loading in microgravity results in loss of muscle
mass _26_and reduced bone growth or loss of bone massJ 27 _9_
Body fluids, which tend to pool in the lower extremities under
normal gravity, are redistributed to the upper body _3°)during
exposure to microgravity. The physiologic mechanisms control-
ling fluid balance, bone and mineral homeostasis, and muscle
metabolism are known to integrate with the immune system
through cytokines, hormones, neurotransmitters, and
neuropeptidesJ 3_'32_This raises the possibility that systemic
endocrine changes due to fluid redistribution, musculoskeletal
deconditioning, and stress contribute to the known or suspected
immunologic effects of spaceflight.

Rodent suspension experiments model body fluid redistribu-
tion and musculoskeletal effects approximating those of space
flight. Suspension modeling has been used as well to model and
predict the immunologic effects of microgravity. In this study,
suspension modeling was used to expand on previous studies of
cytokine responses during suspension and to begin exploration
of mechanisms of immunologic change during space flight.

The results of this study can be summarized as follows: (i)

Suspension with or without head-down tilt transiently sup-
pressed lymphocyte production of IL-I and IL-2. IFN-a/13
responses of lymphocytes from suspended rats tended to be
suppressed during the first few days of suspension while IFN-_
responses were transiently enhanced; (ii) Simple restraint of rats
in the suspension harness, with full load bearing on the forelimbs
and hindlimbs, produced immunologic effects similar to those of
musculoskeletal unloading regardless of head-down tilt.

The finding that restraint in the suspension harness produced
immunologic effects essentially identical to those of suspension,
regardless of head-down tilt, suggests that most of the immuno-
logic effects are related to restraint rather than hypokinesia/
hypodynamia or antiorthostasis. Restraint is a potent elicitor of
the physiologic stress response, which is well known to suppress
immunologic functionsJ TM However, restraint of rats in the
suspension harness, even with full loading on the limbs, entailed
some reduction of limb movement. Therefore, it is possible that

hypokinesia contributed to the effects of harness restraint as well
as to those of suspension.

A previous study found that AHH suspension reduced the
ability of mice to produce IFN-a/13 but that mice suspended in
the OHH position retained that abilityJ jS_ In contrast to the
previous study using mice, these results indicate that suspension
modeling has little, if any effect on in vitro IFN-a/13 production
in rats regardless of body orientation or loading. This may
indicate that the mouse model is more appropriate for studying
the immunologic effects of body fluid redistribution in suspen-
sion modeling.

Reduced in vitro IFN-_, production has been seen in humans
and rats lollowing space flight. _5"9m_In this suspension study,
IFN-'y production was increased following suspension. How-
ever, the increase in IFN production was seen only in rats which

experienced musculoskeletal unloading. Therefore, factors as-
sociated with musculoskeletal unloading appear to be responsi-
ble for the effects on IFN-'y. Considering the similarity between
the musculoskeletal effects of suspension modeling and micro-
gravity, then similar IFN-'y effects would be expected to occur in
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space flight. However, increased IFN--y production in AHH and

OHH rats in this study contrasted with space flight results, which

found that in vitro IFN-'y production was lower in rats following

space flight/5_ Cells from the space flight rats were harvested

after reentry and landing, and had to be transported at 1 gram for

several hours, therefore, the effects seen in the flight study may

have reflected readaptation to gravity following space flight

rather than the effects of microgravity proper.

Comparisons of the effects of suspension on IL production

with those of space flight are impossible at present since

measurements of these responses have not been reported in

humans or other animals during or following space flight.

Suppression of the IL- 1 and IL-2 response in the restrained rats

as well as the suspended rats is consistent with stress-induced
• (=14)

immunosuppresston. -

It has been pointed out that IL-2 usually correlates with IFN-'y

in cultures of ConA-stimulated lymphocytes. Reduced 1L activ-

ity coinciding with increased IFN-_/activity in AHH and OHH

suspended rats may represent an uncoupling of cytokine regula-

tory pathways.

The results of these studies show that rat suspension modeling

of microgravity can induce functional changes in cellular immu-

nity in vitro. Body fluid redistribution and musculoskeletal

unloading do not appear to contribute to the observed immuno-

logic changes with the exception of the increased in vitro IFN-'y

response, which was apparently related to musculoskeletal

unloading. The immunologic effects were otherwise consistent

with immunosuppression related to the physiologic stress of

restraint.

Assuming that activation of physiologic stress in the suspen-

sion mc, del is comparable to that of actual space flight, then

similar transient immunologic effects should occur in short-term

flights. However, these findings do not rule out possible immu-

nologic consequences of fluid redistribution and musculoskele-

tal deconditioning during long-term space flights. Experiments

conducted in vivo during space flights will be necessary to

answer these questions.
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ABSTRACT

Changes in resistance to bacterial and
viral infections in Apollo crew members has
stimulated interest in the study of immunity and

space flight. Results of studies from several
laboratories in both humans and rodents have

indicated alterations after space flight that
include the following immunological parameters:

thymus size, lymphocyte blastogenesis, interfer-
on and interleukin production, natural killer
cell activity, cytotoxic T-cell activity, leuko-
cyte subset population distribution, response of
bone marrow cells to colony stimulating factors,
and delayed hypersensitivity skin test reactiv-
ity. The interactions of the immune system with

other physiological systems, including muscle,
bone, and the nervous system, may play a major
role in the development of these immunological
parameters during and after flight. There may
also be direct effects of space flight on
immune responses.

INTRODUCTION

Until recently, reports on the effects of
space flight on the immune system have been
interesting, but often inconclusive (I-5).*
These studies have been limited by small sample
size, the relatively small number of flights

available for immunological studies, and,
occasionally, by uncontrollable experimental
conditions (1-5). Nevertheless, it is

apparent from the results of these earlier
studies that some alterations of immunological
parameters do occur during, or immediately
following, space flight. Several factors could
contribute to these effects, including micro-
gravity, stress, radiation, and interaction
with other host biological systems. This

*Numbers in parentheses designate references at
end of paper.

report reviews our current understanding of the
effects of space flight, and of systems used to
simulate the effects of microgravity, on immune
responses.

MICROGRAVITY MODELING SYSTEMS

As a result of the limited opportunities
for space flight, ground models simulating some
aspects of space flight have been used to study
changes in immune responses. Immune responses
of rodents have been the main subject of these
studies, because modeling using these quadrupeds
was more easily and economically carried out.

In one such study, mice were maintained in

a "space cabin" environment in which barometric
pressure was altered in a pressure chamber (6).

These confined mice were more susceptible to
mengovirus infection than were control mice.
These data suggested that maintenance of mice
in this restricted environment with alterations

in pressure could have resulted in alterations
in immune responses, such as interferon or anti-
body production, that decreased their resistance
to viral infections.

By far the most widely used model to sim-
ulate some aspects of weightlessness that occur
during space flight has been antiorthostatic,
(15-20 o head-down tilt), hypokinetic, hypodynam-

ic suspension (no load on the hind-limbs) by
tail (7) or by harness (8). The immunologic
results have been obtained using either rats or
mice suspended similarly (9). The suspension
model promotes the development of physiological
changes in muscle, bone, fluid-shifts, and
certain other parameters that simulate changes
observed following flight (7,8). For example,
suspended rats showed involution of the thymus
similar to that seen after space flight (10,11).

Although rodent suspension is a less than perfect
model for simulating the phsyiological effects
of microgravity seen during space flight, it has
proven useful in aiding the determination of
which immunological parameters should be studied



2 911515

in rare flight experiments.
One set of experiments involved the study

of cytokines. Cytokines are soluble, non-anti-
body mediators that play a major role in cell-

to-cell communication and regulation of immune
responses (12). The major cytokines studied
were the interferons. Interferons are a family
of proteins that have antiviral activity and

several other activities, including regulation
of immune responses (12). Interferon-alpha is
produced by leukocytes primarily after stimula-
tion with viruses, double-stranded RNAs, or other
non-specific inducers (12). Interferon-beta
production, primarily by fibroblasts, is init-

iated by the same stimuli as is interferon-alpha
(12). In many cases, these two interferons are
difficult to separate and are referred to common-

ly as interferon-alpha/beta. The third type of
interferon, interferon-gamma is a product of
T-lymphocyte-mediated responses stimulated either
with a specific antigen or with a mitogen such
as concanavalin-A (12).

The first cytokine studies showed that
suspension of rats in an antiorthostatic model
resulted in severe inhibition of interferon-

alpha/beta production (13). The rats were sus-
pended antiorthostatically in this tail suspen-
sion model for two weeks,and then challenged

intavenously with polyriboinosinic-polyribocyt-
idylic acid (poly-I.C, a double-stranded RNA

inducer of interferon-alpha/beta). There was

an 80% decrease in interferon-alpha/beta produc-

tion compared to normally caged controls (13).

In more recent studies, rats were suspended

antiorthostatically for I-2 weeks, and spleens

were removed immediately after the rats were

taken down from suspension. Spleen cells were

placed in culture and then challenged with either

poly-I.C or concanavalin-A, Both interferon-

alpha/beta and interferon-gamma production was

altered (14). These results suggest that anti-

orthostatic suspension of rats resulted in

altered interferon production, a finding

similar to that observed when cosmonauts were

tested for interferon production after space
flight (15).

Similar results were observed when mice

were suspended antiorthostatically (16). In

an attempt to control for the stresses of

confinement and suspension, mice were also sus-

pended orthostatically in a harness with no head-

down tilt. Mice suspended I-2 weeks in the

antiorthostatic orientation showed severely

inhibited interferon-alpha/beta production com-

pared to controls housed normally (16). Mice

suspended in the orthostatic orientation showed

no change in interferon-alpha/beta production

compared to controls (16). This suggested that

the antiorthostatic orientation of suspension

was required for inhibited interferon-alpha/beta

production, i.e. the stress of suspension alone

could not account for inhibited interferon pro-

duction. Mice suspended antiorthostatically

and then allowed to recover in normal cages for

one week regained their capacity to produce

interferon-alpha/beta (16).

In addition, suspended mice were inoculated

with the D variant of encephalomyocarditis virus
(EMC-D virus). EMC-D virus is a convenient
virus to work with, because alteration in a

glucose tolerance test is all that is necessary
to show successful infection with the virus.

Females of the Swiss/Webster strain of mouse
normally are totally resistant to infection
with EMC-D virus (17). Resistance to EMC-D

virus is mediated, at least in part, by inter-
feron (17). Antiorthostatically suspended mice
became susceptible to infection, while ortho-
statically suspended mice remained resistant
to infection (17). Alterations in resistance to
EMC-D virus correlated with alterations in
interferon production. These results indicated

that changes in immunological parameters induced
by antiorthostatic suspension had the potential
to alter resistance to infection.

Other mouse suspension studies have shown

that leukocytes from mice suspended antiortho-
statically had impaired ability to produce
superoxide, decreased ability to kill phagocy-

tosed bacteria (Propionibacterium acnes) and

had altered serum corticosterone levels (18).

This indicated that antiorthostatic suspension
could alter the inflammatory and phagocytic

responses.

The suspension studies described above

indicate that this model of some aspects of

microgravity resulted in alterations of important

immunological parameters. The resulting

information has provided a basis for planning
space flight studies.

IMMUNOLOGICAL STUDIES INVOLVING THE INTACT
ORGANISM

Although cellular immune responses of U.S.
_nd Soviet crew members have been studied by
various methods for two decades, their remains
a limited pool of reliable information from
which to draw conclusions. Considerable immuno-

logical testing was performed following 11 U.S.

Apollo flights, 3 U.S. Skylab flights, and
U.S./U.S.S.R. Apollo-Soyuz flights (19). In
addition, postflight alterations in the in vitro

responses of cosmonaut lymphocytes were reported
following the flights of Soyuz 6, 7, 8, and 9
(20); for the two Soyuz visits to the Salyut 4
space station, Soyuz 24, 26 and 27; Salut 5;
and the two Soyuz visits to Salyut 6 (21).
However, because of small sample sizes, mission

anomalies and constraints on analytical condit-
ions, the resulting data were generally incon-
clusive (19). Nevertheless, a pattern seemed
to be developing. These studies appeared to

suggest that lymphocyte activity may be depressed
following spaceflight and that a postflight
leukocytosis concurrent with a postflight lympho-
cytopenia could be exprected (19).

Extensive comparisons of preflight and post-
flight immunological parameters were conducted

with the first 41 U.S. Space Shuttle astronauts
(4,5). This study demonstrated unequivocally
that the absolute number of lymphocytes in the
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peripheral circulation, the ability of these

cells to respond to mitogenic stimulation

(lymphocyte blastogenesis), and the number of

eosinophils in the peripheral circulation were

all decreased typically after flight. Converse-

ly, there was an almost universal doubling of the

absolute neutrophil number, and often a major

change in the CD_/CD8 (helper T-cell/cytotoxic-

suppressor T-cell) ratio. This latter event

resulted from an increase in the helper (CD4)

T-lymphocyte population as determined by flow

cytometric analysis (5). Data from Space

Shuttle flights 41B and 41D involving 11 crew

members indicated a postflight decrease in

circulating monocytes and B-lymphocytes.
Further, the reduced T-lymphocyte blastogenesis

was shown to correlate with monocyte count.

Since monocytes serve a critical role during

lymphocyte activation for blastogenesis as potent

immunoregulatory cells through release of

cytokines, these findings suggested a possible

mechanism for blunted i__nyitro mitogen-induced

blastogenesis (19).

Only recently has the effect of space

flight on the ability of the human cell-mediated

immune system to function normally in vivo been

tested in flight. This was accomplished by

using the delayed-type hypersensitivity (DTH)

response to recall antigens as a simple, yet
effective method for evaluating in-flight

mediated abnormally diminished reactivity in

U.S. Space Shuttle crewmembers. The cell-mediat-
ed immune mechanism was evaluated in 10 astro-

nauts by measuring their in-flight DTH response
to the common recall antigens of tetanus, diph-

theria, tuberculin, Streptococcus, Proteus,

Candida, and Trichophyton. Three of the subjects
were evaluated after four days, three after five

days, and four after ten days of space flight.
The mean number of reactions within the popula-

tion of 10 subjects was reduced from 4.5 pre-

flight to 3.0 during flight, and the mean
aggregate reaction size decreased from 21.4 mm

before flight to 13.7 mm during flight. The

authors reported that the data suggest that on

day 4 of a Space Shuttle mission, the cell-
mediated immune system is degraded measurably.

Between day 5 and day 10, the depression reaches

its maximum, and the cell-mediated immunity

mechanism begins to adjust to the new conditions

(Taylor, G.T., e_t_ta l., presented at the 1990

American Society for Gravitational and Space

Biology Meeting, Louisville, KY).

Soviet/Hungarian studies have also indicated

that leukocytes from some cosmonauts had a severe
decrease in production of interferon-alpha/beta

immediately after return from flight (15).

Additional Soviet studies have indicated drama-

tic decreases in natural killer and cytotoxic

T-lymphocyte activity in the peripheral blood of
cosmonauts obtained within 24 hours following

space flight.
Studies with the human antibody-mediated

humoral immune system have been more limited

and inconclusive. These studies have shown

that there did not appear to be alterations in

the circulating levels of immunoglobulin classes

in astronauts after flight in a Space Shuttle

mission (22). There have been no studies to

date to determine the effects of space flight

on the ability to sensitize a host to specific

antigen during flight, or the ability of a host

to develop an immune response during flight

after being sensitized on the ground. Therefore,

the effects of space flight on antibody responses

remain largely unexplored.

Additional flight studies have been carried

out using rats. Several studies of rats flown

in space have indicated that prolonged space

flight resulted in hypoplasia of lymphoid organs

and alterations in mitogen-induced blastogenesis

(2,3). These effects were transient, and re-

turned to normal after a postflight recovery

period (2,3).

Several rats were flown in SpaceLab-3, and

experiments were carried out to determine the

effects of flight on cytokine production (23).

The rats were flown on the Space Shuttle for 7

days, and after landing, a transcontinental

airplane flight and a 12 hour delay occured prior
to sacrifice (23). This delay _ airplane flight

could have affected the results of the study.

After sacrifice, spleens were removed from the

rats and placed in individual cell cultures.

The cultures were then challenged with concanav-

alin-A to induce cytokines. After the appropri-
ate time interval, culture supernatant fluids

were harvested and assayed for interferon-gamma

activity. Interferon-gamma production was

reduced significantly in cells taken from rats

flown in space, compared to cells from control

rats (23). This flight experiment yielded
results consistent to those observed after anti-

orthostatic suspension of rats, and with the

results of impaired interferon production by

cosmonauts after flight (15).

Production of another cytokine, interleukin-

3, was also measured in the same SpaceLab-3

experiment (23). Interleukin-3 plays a major

role as a growth factor for immunologically

important cells. In this case, spleen cells

from rats flown on SpaceLab-3 showed the same

pattern of production of interleukin-3 as did
cells from control rats (23). These data

suggested that not all immunological parameters

are affected by space flight.
Additional studies were carried out aboard

the Cosmos # 1887 Soviet space flight. In this

flight, the immunological studies were extended

to additional areas. Experiments were carried

out to determine the effects of space flight on

the distribution of leukocyte subpopulations.

The distribution of leukocyte subpopulations has
been shown to be an important indicator of

normal immunological function: for example,

patients with acquired immune deficiency syndrome

(AIDS) have an altered ratio of helper T-lympho-

cytes to suppressor T-lymphocytes (25). In the

first set of experiments, spleens were removed

from 5 rats flown for 12 and one-half days on

biosputnik Cosmos # 1887. The biosputnik landed
off-course, and a 48 hour delay and a trans-
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continental airplane flight occured between

landing of the space capsule and sacrifice of

the rats, which may have affected the results

observed. The spleens were dissociated into

individual cells and separate samples were
stained with different antibodies directed

against cell surface markers. These antibodies

were: anti-asialo GM-I (natural killer cells),

0X-39 (interleukin-2 receptor),OX-1 (pan-

leukocyte marker), W3/25 (helper T-lymphocyte),

OX-8 (suppressor/cytotoxic T-lymphocyte), W3/13

(pan T-lymphocyte), OX-4 (polymorphic la-class II

histocompatibility antigen), anti-rat IgG Fab',

anti-rabbit IgG (irrelevant antibody control),

and no antibody (negative control). The stained

cells were analyzed by flow cytometry. Although

there may have been problems with nonspecific

staining, the authors reported a trend suggesting

a dramatic shift in some cell populations

compared to synchronous controls (rats housed

and treated in a similar fashion to flight

animals with the exception of microgravity and

radiation exposure of flight) and ground
controls (vivarium controls in standard vivarium

housing). These dramatic shifts were noted in

populations of total T-lymphocytes, helper T-

lymphocytes, suppressor/cytotoxic T-lymphocytes

and interleukin-2 receptor bearing T-lymphocytes

(24).
Additional studies carried out onrats

flown in Cosmos # 1887 involved bone marrow

cells. Due to the limited number of bone marrow

cells from the femur available for the experi-
ment, the distribution of only two cell popula-
tions was examined in the bone marrow, i.e. the
total leukocyte population and the leukocytes
carrying surface immunoglobulin. The analysis
showed a larger number of myelogenous cells
bearing surface immunoglobulin from flown rats

as compared to synchronous and ground control
rats (24). Myelogenous cells are monocyte/

macrophage precursors and would not have been
expected to have a surface immunoglobulin
marker. In addition, the bone marrow cells
were tested for their ability to respond to
colony stimulating factor-monocyte (CSF-M).
CSF-M stimulates the division of monocyte/
macrophage precursors (26). The bone marrow
cells were from flown rats were inhibited in

their ability to form colonies in the presence
of CSF-M, indicating a lack of division, and
possibly maturation, on the part of the
precursor cells (24). The bone marrow cell data
suggested that an unusual response for
myelogenous cells (i.e. possibly aberrent

division and bearing of the inappropriate
surface immunoglobulin marker) was induced by

space flight, and those cells were refractory
to additional exogenous stimulation by CSF-M
upon return to earth. Monocytes/macrophages,
therefore, are immunologically important cells

that appear to be affected by space flight.
Additional Soviet studies carried out on

Cosmos biosputnik flights have indicated that

space flight resulted in decreased rat natural

killer cell and cytotoxic T-lymphocyte activity

(27). Therefore, rodent studies confirm and

extend the human studies that suggest that space

flight results in severe alterations of immune

responses.

IMMUNOLOGIC STUDIES INVOLVING CELL CULTURES

The studies described above indicate that

certain immunological functions in animals and

humans appear to be affected by space flight.
Several studies have been carried out to deter-

mine the ability of isolated cells to sense and

respond to changes in the gravity vector.

Cogoli and his associates (28-30) developed an

incubator that allowed them to carry out

lymphocyte culture experiments during space

flight. In this case, human lymphocyte cultures

were exposed to mitogens during space flight.

Lymphocyte blastogenesis was inhibited signif-

icantly compared to ground controls (28-30).

Similar results were obtained when lymphocytes

were maintained in a clinostat on the ground
(31). A clinostat is a centrifuge-like device

that randomly changes the direction of the

gravity vector (31).

In a follow-up experiment, cells were also

incubated during flight in a centrifuge that

subjected the cells to i G. Much of the blasto-

genic capacity of the cells was regained (28-30).

This could indicate a direct effect of gravity

on the cellular processes, or perhaps some

abnormal cell-to-cell contact in microgravity.
An additional explanation could be that the"

lack of blastogenesis was due to an impairment

of the ability of receptors on the cells to

interact withmitogen. Later studies using

altered substrata for the cells on the ground

indicated that decreased lymphocyte adhesion

could contribute to the suppressed in vitro

lymphocyte blastogenesis observed during space
flight (32). In any case, the results of this

series of experiments indicated that a cellular

immune process was inhibited in isolated cells

during space flight.

An additional study using cultures of human

leukocytes was carried out by Talas and her

associates (15). Various mitogens and inducers
were added to the cultures to induce interferon-

alpha/beta. The cells from the cultures

produced strikingly higher levels of interferon-
alpha/beta than did cells from control cultures

maintained on the ground (15); however, it should

be noted that this was a limited experiment with

a small "n". This result was different from that

observed from the cosmonauts after the same

flight, and different than the results of the

rodent studies in which interferon-alpha/beta
production was inhibited.

It is not surprising that results differed

between the cell culture studies and the studies

of cells from intact organisms flown in space.
In the latter case, the immunologically important

cells may interact with other cells and other

systems. In the host, the cell is in its natural



911515 5

milieu, able to interact and cooperate with
other cells and other systems. For example,
the immune system interacts closely with the
neuroendocrine system (33). The interactions

of the immune system with other systems in
space flight certainly require additional study.

CONCLUSIONS

It is apparent from the studies described
above that space flight has profound effects on
immune responses. The mechanisms of these
effects remain to be established. Although
cell culture studies and ground-based modeling
have suggested that both microgravity and stress

can play some role in the alterations of the
immune response observed after space flight, the
full nature of that role remains to be estab-

lished. In addition, the role of radiation and
other space flight factors has not been studied

to a great extent.
In addition, it is clear that the full

range and duration of the effects of space
flight on the immune response have not been
established. The effects of long-term flight as

opposed to short-term flight remain to be
established. The duration and reversibility of
the effects of space flight on immune responses,

particularly after long-term flights, has not
yet been established.

Most importantly, the effects of space
flight-induced immune alterations on resistance
to infection has not been demonstrated. This

could have profound effects on the ability to
carry out long-term manned space flights. In
addition, if resistance to infection is altered,
the development of possible countermeasures
should be undertaken.

In short, it is now clear that space flight

affects immune responses. Much work remains to
be done to establish the significance of these
effects.
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